In mathematics, Fontaine's period rings are a collection of commutative rings first defined by Jean-Marc Fontaine[1] that are used to classify p-adic Galois representations.
The ring
BdR
Cp
\overline{Qp}
\tilde{E
So an element of
\tilde{E
(x1,x2,\ldots)
xi\in
l{O} | |
Cp |
/(p)
p | |
x | |
i+1 |
\equivxi\pmodp
f:\tilde{E
f(x1,x2,...c)=x1
t:\tilde{E
t(x,x2,...c)=\limi\to\tilde
pi | |
x | |
i |
\tildexi
xi
l{O} | |
Cp |
t
l{O} | |
Cp |
\to
l{O} | |
Cp |
/(p)
f
\theta:W(\tilde{E
\theta([x])=t(x)
x\in\tilde{E
[x]
x
+ | |
B | |
dR |
\tilde{B
\ker\left(\theta:\tilde{B
BdR
+ | |
B | |
dR |