Rijndael S-box explained

The Rijndael S-box is a substitution box (lookup table) used in the Rijndael cipher, on which the Advanced Encryption Standard (AES) cryptographic algorithm is based.[1]

Forward S-box

AES S-box!! 00 !! 01 !! 02 !! 03 !! 04 !! 05 !! 06 !! 07 !! 08 !! 09 !! 0a !! 0b !! 0c !! 0d !! 0e !! 0f
00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16
The column is determined by the least significant nibble, and the row by the most significant nibble. For example, the value 9a is converted into b8.
The S-box maps an 8-bit input,, to an 8-bit output, . Both the input and output are interpreted as polynomials over GF(2). First, the input is mapped to its multiplicative inverse in, Rijndael's finite field. Zero, as the identity, is mapped to itself. This transformation is known as the Nyberg S-box after its inventor Kaisa Nyberg.[2] The multiplicative inverse is then transformed using the following affine transformation:

\begin{bmatrix}s0\\s1\\s2\\s3\\s4\\s5\\s6\\s7\end{bmatrix}= \begin{bmatrix} 1&0&0&0&1&1&1&1\\ 1&1&0&0&0&1&1&1\\ 1&1&1&0&0&0&1&1\\ 1&1&1&1&0&0&0&1\\ 1&1&1&1&1&0&0&0\\ 0&1&1&1&1&1&0&0\\ 0&0&1&1&1&1&1&0\\ 0&0&0&1&1&1&1&1 \end{bmatrix}\begin{bmatrix} b0\b1\b2\b3\b4\b5\b6\b7 \end{bmatrix}+\begin{bmatrix} 1\ 1\ 0\ 0\ 0\ 1\ 1\ 0 \end{bmatrix}

where is the S-box output and is the multiplicative inverse as a vector.

This affine transformation is the sum of multiple rotations of the byte as a vector, where addition is the XOR operation:

s=b(b\lll1)(b\lll2)(b\lll3)(b\lll4)6316

where represents the multiplicative inverse,

is the bitwise XOR operator,

\lll

is a left bitwise circular shift, and the constant is given in hexadecimal.

An equivalent formulation of the affine transformation is

si=bib(i8}b(i8}b(i8}b(i8}ci

where,, and are 8 bit arrays, is 01100011, and subscripts indicate a reference to the indexed bit.[3]

Another equivalent is:

s=\left(b x 3110\mod{25710

}\right) \oplus 99_[4] [5] where

x

is polynomial multiplication of

b

and

3110

taken as bit arrays.

Inverse S-box

01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
10 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
20 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
30 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
40 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
50 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84
60 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06
70 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b
80 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
90 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
a0 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
b0 fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
c0 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
d0 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
e0 a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61
f0 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d
The inverse S-box is simply the S-box run in reverse. For example, the inverse S-box of b8 is 9a. It is calculated by first calculating the inverse affine transformation of the input value, followed by the multiplicative inverse. The inverse affine transformation is as follows:

\begin{bmatrix}b0\b1\b2\b3\b4\b5\b6\b7\end{bmatrix}= \begin{bmatrix} 0&0&1&0&0&1&0&1\\ 1&0&0&1&0&0&1&0\\ 0&1&0&0&1&0&0&1\\ 1&0&1&0&0&1&0&0\\ 0&1&0&1&0&0&1&0\\ 0&0&1&0&1&0&0&1\\ 1&0&0&1&0&1&0&0\\ 0&1&0&0&1&0&1&0 \end{bmatrix} \begin{bmatrix} s0\s1\s2\s3\s4\s5\s6\s7 \end{bmatrix}+\begin{bmatrix} 1\ 0\ 1\ 0\ 0\ 0\ 0\ 0 \end{bmatrix}

The inverse affine transformation also represents the sum of multiple rotations of the byte as a vector, where addition is the XOR operation:

b=(s\lll1)(s\lll3)(s\lll6)516

where

is the bitwise XOR operator,

\lll

is a left bitwise circular shift, and the constant is given in hexadecimal.

Design criteria

The Rijndael S-box was specifically designed to be resistant to linear and differential cryptanalysis. This was done by minimizing the correlation between linear transformations of input/output bits, and at the same time minimizing the difference propagation probability.

The Rijndael S-box can be replaced in the Rijndael cipher, which defeats the suspicion of a backdoor built into the cipher that exploits a static S-box. The authors claim that the Rijndael cipher structure is likely to provide enough resistance against differential and linear cryptanalysis even if an S-box with "average" correlation / difference propagation properties is used (cf. the "optimal" properties of the Rijndael S-box).

Example implementation in C language

The following C code calculates the S-box:

  1. include
  2. define ROTL8(x,shift) ((uint8_t) ((x) << (shift)) | ((x) >> (8 - (shift))))

void initialize_aes_sbox(uint8_t sbox[256])

Notes and References

  1. Web site: The Rijndael Block Cipher . 2013-11-11.
  2. Nyberg K. (1991) Perfect nonlinear S-boxes. In: Davies D.W. (eds) Advances in Cryptology – EUROCRYPT ’91. EUROCRYPT 1991. Lecture Notes in Computer Science, vol 547. Springer, Berlin, Heidelberg
  3. Web site: The Advanced Encryption Standard . FIPS PUB 197: the official AES standard . 2001-11-26 . . 2010-04-29.
  4. Web site: Matlab implementation of the Advanced Encryption Standard . 2001-12-19 . Jörg J. Buchholz.
  5. Web site: An Improved AES S-box and Its Performance Analysis . May 2011 . Jie Cui . Liusheng Huang . Hong Zhong . Chinchen Chang . Wei Yang.