(H,\langle ⋅ , ⋅ \rangle)
0<c\leC<+infty
c\left(\sumn|
2 | |
a | |
n| |
\right)\leq\left\Vert\sumnanxn\right\Vert2\leqC\left(\sumn|
2 | |
a | |
n| |
\right)
for all sequences of scalars (an) in the ℓp space ℓ2. A Riesz sequence is called a Riesz basis if
\overline{\rmspan(xn)}=H
Alternatively, one can define the Riesz basis as a family of the form
\left\{xn
infty | |
\right\} | |
n=1 |
=\left\{Uen
infty | |
\right\} | |
n=1 |
\left\{en
infty | |
\right\} | |
n=1 |
H
U:H → H
Riesz sequence should not be confused with Paley-Wiener theorem.
Let
\{en\}
H
\{xn\}
\{en\}
\left\|\sumai(ei-xi)\right\|\leqλ\sqrt{\sum|ai|2
for some constant
λ
0\leqλ<1
a1,...c,an
(n=1,2,3,...c)
\{xn\}
H
If H is a finite-dimensional space, then every basis of H is a Riesz basis.
Let
\varphi
\varphin(x)=\varphi(x-n)
and let
\hat{\varphi}
{\varphi}
0<c\leC<+infty
1. \forall(an)\in\ell2, c\left(\sumn|
2 | |
a | |
n| |
\right)\leq\left\Vert\sumnan\varphin\right\Vert2\leqC\left(\sumn|
2 | |
a | |
n| |
\right)
2. c\leq\sumn\left|\hat{\varphi}(\omega+2\pin)\right|2\leqC
The first of the above conditions is the definition for (
{\varphin}