Ricci scalars (Newman–Penrose formalism) explained

\{\Phi00,\Phi11,\Phi22\}

, three (or six) complex scalars

\{\Phi01=\overline{\Phi}10,\Phi02=\overline{\Phi}20,\Phi12=\overline{\Phi}21\}

and the NP curvature scalar

Λ

. Physically, Ricci-NP scalars are related with the energy–momentum distribution of the spacetime due to Einstein's field equation.

Definitions

Given a complex null tetrad

\{la,na,ma,\bar{m}a\}

and with the convention

\{(-,+,+,+);la

a
n
a=-1,m

\bar{m}a=1\}

, the Ricci-NP scalars are defined by[1] [2] [3] (where overline means complex conjugate)

\Phi00:=

1
2

Rablalb,\Phi11:=

1
4

Rab(lanb+ma\bar{m}b),\Phi22:=

1
2

Rabnanb,   Λ:=

R
24

;

\Phi01:=

1
2

Rablamb,    \Phi10:=

1
2

Rabla

b=\overline{\Phi}
\bar{m}
01

,


\Phi02:=

1
2

Rabmamb,\Phi20:=

1
2

Rab\bar{m}a

b=\overline{\Phi}
\bar{m}
02

,


\Phi12:=

1
2

Rabmanb,    \Phi21:=

1
2

Rab\bar{m}a

b=\overline{\Phi}
n
12

.

Remark I: In these definitions,

Rab

could be replaced by its trace-free part

Qab=Rab-

1
4

gabR

or by the Einstein tensor

Gab=Rab-

1
2

gabR

because of the normalization (i.e. inner product) relations that

lala=nana=mama=\bar{m}a\bar{m}a=0,

lama=la\bar{m}a=nama=na\bar{m}a=0.

Remark II: Specifically for electrovacuum, we have

Λ=0

, thus

24Λ=0=Rabgab=Rab(-2lanb+2ma\bar{m}b)Rabla

b=R
n
ab

ma\bar{m}b,

and therefore

\Phi11

is reduced to

\Phi11:=

1
4

Rab(lanb+ma\bar{m}

b)=1
2

Rabla

b=1
2
n

Rabma\bar{m}b.

Remark III: If one adopts the convention

\{(+,-,-,-);la

a
n
a=1,m

\bar{m}a=-1\}

, the definitions of

\Phiij

should take the opposite values;[4] [5] [6] [7] that is to say,

\Phiij\mapsto-\Phiij

after the signature transition.

Alternative derivations

According to the definitions above, one should find out the Ricci tensors before calculating the Ricci-NP scalars via contractions with the corresponding tetrad vectors. However, this method fails to fully reflect the spirit of Newman–Penrose formalism and alternatively, one could compute the spin coefficients and then derive the Ricci-NP scalars

\Phiij

via relevant NP field equations that

\Phi00=D\rho-\bar{\delta}\kappa-(\rho2+\sigma\bar{\sigma})-(\varepsilon+\bar{\varepsilon})\rho+\bar{\kappa}\tau+\kappa(3\alpha+\bar{\beta}-\pi),

\Phi10=D\alpha-\bar{\delta}\varepsilon-(\rho+\bar{\varepsilon}-2\varepsilon)\alpha-\beta\bar{\sigma}+\bar{\beta}\varepsilon+\kappaλ+\bar{\kappa}\gamma-(\varepsilon+\rho)\pi,

\Phi02=\delta\tau-\Delta\sigma-(\mu\sigma+\bar{λ}\rho)-(\tau+\beta-\bar{\alpha})\tau+(3\gamma-\bar{\gamma})\sigma+\kappa\bar{\nu},

\Phi20=Dλ-\bar{\delta}\pi-(\rhoλ+\bar{\sigma}\mu)-\pi2-(\alpha-\bar{\beta})\pi+\nu\bar{\kappa}+(3\varepsilon-\bar{\varepsilon})λ,

\Phi12=\delta\gamma-\Delta\beta-(\tau-\bar{\alpha}-\beta)\gamma-\mu\tau+\sigma\nu+\varepsilon\bar{\nu}+(\gamma-\bar{\gamma}-\mu)\beta-\alpha\bar{λ},

\Phi22=\delta\nu-\Delta\mu-(\mu2+λ\bar{λ})-(\gamma+\bar{\gamma})\mu+\bar{\nu}\pi-(\tau-3\beta-\bar{\alpha})\nu,

2\Phi11=D\gamma-\Delta\varepsilon+\delta\alpha-\bar{\delta}\beta-(\tau+\bar{\pi})\alpha-\alpha\bar{\alpha}-(\bar{\tau}+\pi)\beta-\beta\bar{\beta}+2\alpha\beta+(\varepsilon+\bar{\varepsilon})\gamma-(\rho-\bar{\rho})\gamma+(\gamma+\bar{\gamma})\varepsilon-(\mu-\bar{\mu})\varepsilon-\tau\pi+\nu\kappa-(\mu\rho\sigma),

while the NP curvature scalar

Λ

could be directly and easily calculated via
Λ=R
24
with

R

being the ordinary scalar curvature of the spacetime metric

gab=-lanb-nalb+ma\bar{m}b+\bar{m}amb

.

Electromagnetic Ricci-NP scalars

According to the definitions of Ricci-NP scalars

\Phiij

above and the fact that

Rab

could be replaced by

Gab

in the definitions,

\Phiij

are related with the energy–momentum distribution due to Einstein's field equations

Gab=8\piTab

. In the simplest situation, i.e. vacuum spacetime in the absence of matter fields with

Tab=0

, we will have

\Phiij=0

. Moreover, for electromagnetic field, in addition to the aforementioned definitions,

\Phiij

could be determined more specifically by


\Phiij=2\phii\overline{\phi}j,(i,j\in\{0,1,2\}),

where

\phii

denote the three complex Maxwell-NP scalars which encode the six independent components of the Faraday-Maxwell 2-form

Fab

(i.e. the electromagnetic field strength tensor)


\phi0:=-Fablamb,\phi1:=-

1
2

Fab(lana-ma\bar{m}b),\phi2:=Fabna\bar{m}b.

Remark: The equation

\Phiij=2\phii\overline{\phi}j

for electromagnetic field is however not necessarily valid for other kinds of matter fields.For example, in the case of Yang–Mills fields there will be

\Phiij=Tr(\digammai\bar{\digamma}j)

where

\digammai(i\in\{0,1,2\})

are Yang–Mills-NP scalars.[8]

See also

References

  1. Jeremy Bransom Griffiths, Jiri Podolsky. Exact Space-Times in Einstein's General Relativity. Cambridge: Cambridge University Press, 2009. Chapter 2.
  2. Valeri P Frolov, Igor D Novikov. Black Hole Physics: Basic Concepts and New Developments. Berlin: Springer, 1998. Appendix E.
  3. Abhay Ashtekar, Stephen Fairhurst, Badri Krishnan. Isolated horizons: Hamiltonian evolution and the first law. Physical Review D, 2000, 62(10): 104025. Appendix B. gr-qc/0005083
  4. Ezra T Newman, Roger Penrose. An Approach to Gravitational Radiation by a Method of Spin Coefficients. Journal of Mathematical Physics, 1962, 3(3): 566-768.
  5. Ezra T Newman, Roger Penrose. Errata: An Approach to Gravitational Radiation by a Method of Spin Coefficients. Journal of Mathematical Physics, 1963, 4(7): 998.
  6. Subrahmanyan Chandrasekhar. The Mathematical Theory of Black Holes. Chicago: University of Chikago Press, 1983.
  7. Peter O'Donnell. Introduction to 2-Spinors in General Relativity. Singapore: World Scientific, 2003.
  8. E T Newman, K P Tod. Asymptotically Flat Spacetimes, Appendix A.2. In A Held (Editor): General Relativity and Gravitation: One Hundred Years After the Birth of Albert Einstein. Vol (2), page 27. New York and London: Plenum Press, 1980.