\{\Phi00,\Phi11,\Phi22\}
\{\Phi01=\overline{\Phi}10,\Phi02=\overline{\Phi}20,\Phi12=\overline{\Phi}21\}
Λ
Given a complex null tetrad
\{la,na,ma,\bar{m}a\}
\{(-,+,+,+);la
a | |
n | |
a=-1,m |
\bar{m}a=1\}
\Phi00:=
1 | |
2 |
Rablalb, \Phi11:=
1 | |
4 |
Rab(lanb+ma\bar{m}b), \Phi22:=
1 | |
2 |
Rabnanb, Λ:=
R | |
24 |
;
\Phi01:=
1 | |
2 |
Rablamb, \Phi10:=
1 | |
2 |
Rabla
b=\overline{\Phi} | |
\bar{m} | |
01 |
,
\Phi02:=
1 | |
2 |
Rabmamb, \Phi20:=
1 | |
2 |
Rab\bar{m}a
b=\overline{\Phi} | |
\bar{m} | |
02 |
,
\Phi12:=
1 | |
2 |
Rabmanb, \Phi21:=
1 | |
2 |
Rab\bar{m}a
b=\overline{\Phi} | |
n | |
12 |
.
Remark I: In these definitions,
Rab
Qab=Rab-
1 | |
4 |
gabR
Gab=Rab-
1 | |
2 |
gabR
lala=nana=mama=\bar{m}a\bar{m}a=0,
lama=la\bar{m}a=nama=na\bar{m}a=0.
Remark II: Specifically for electrovacuum, we have
Λ=0
24Λ=0=Rabgab=Rab(-2lanb+2ma\bar{m}b) ⇒ Rabla
b=R | |
n | |
ab |
ma\bar{m}b,
and therefore
\Phi11
\Phi11:=
1 | |
4 |
Rab(lanb+ma\bar{m}
| ||||
Rabla
| ||||
n |
Rabma\bar{m}b.
Remark III: If one adopts the convention
\{(+,-,-,-);la
a | |
n | |
a=1,m |
\bar{m}a=-1\}
\Phiij
\Phiij\mapsto-\Phiij
According to the definitions above, one should find out the Ricci tensors before calculating the Ricci-NP scalars via contractions with the corresponding tetrad vectors. However, this method fails to fully reflect the spirit of Newman–Penrose formalism and alternatively, one could compute the spin coefficients and then derive the Ricci-NP scalars
\Phiij
\Phi00=D\rho-\bar{\delta}\kappa-(\rho2+\sigma\bar{\sigma})-(\varepsilon+\bar{\varepsilon})\rho+\bar{\kappa}\tau+\kappa(3\alpha+\bar{\beta}-\pi),
\Phi10=D\alpha-\bar{\delta}\varepsilon-(\rho+\bar{\varepsilon}-2\varepsilon)\alpha-\beta\bar{\sigma}+\bar{\beta}\varepsilon+\kappaλ+\bar{\kappa}\gamma-(\varepsilon+\rho)\pi,
\Phi02=\delta\tau-\Delta\sigma-(\mu\sigma+\bar{λ}\rho)-(\tau+\beta-\bar{\alpha})\tau+(3\gamma-\bar{\gamma})\sigma+\kappa\bar{\nu},
\Phi20=Dλ-\bar{\delta}\pi-(\rhoλ+\bar{\sigma}\mu)-\pi2-(\alpha-\bar{\beta})\pi+\nu\bar{\kappa}+(3\varepsilon-\bar{\varepsilon})λ,
\Phi12=\delta\gamma-\Delta\beta-(\tau-\bar{\alpha}-\beta)\gamma-\mu\tau+\sigma\nu+\varepsilon\bar{\nu}+(\gamma-\bar{\gamma}-\mu)\beta-\alpha\bar{λ},
\Phi22=\delta\nu-\Delta\mu-(\mu2+λ\bar{λ})-(\gamma+\bar{\gamma})\mu+\bar{\nu}\pi-(\tau-3\beta-\bar{\alpha})\nu,
2\Phi11=D\gamma-\Delta\varepsilon+\delta\alpha-\bar{\delta}\beta-(\tau+\bar{\pi})\alpha-\alpha\bar{\alpha}-(\bar{\tau}+\pi)\beta-\beta\bar{\beta}+2\alpha\beta+(\varepsilon+\bar{\varepsilon})\gamma-(\rho-\bar{\rho})\gamma+(\gamma+\bar{\gamma})\varepsilon-(\mu-\bar{\mu})\varepsilon-\tau\pi+\nu\kappa-(\mu\rho-λ\sigma),
while the NP curvature scalar
Λ
Λ= | R |
24 |
R
gab=-lanb-nalb+ma\bar{m}b+\bar{m}amb
According to the definitions of Ricci-NP scalars
\Phiij
Rab
Gab
\Phiij
Gab=8\piTab
Tab=0
\Phiij=0
\Phiij
\Phiij=2\phii\overline{\phi}j, (i,j\in\{0,1,2\}),
where
\phii
Fab
\phi0:=-Fablamb, \phi1:=-
1 | |
2 |
Fab(lana-ma\bar{m}b), \phi2:=Fabna\bar{m}b.
Remark: The equation
\Phiij=2\phii\overline{\phi}j
\Phiij=Tr(\digammai\bar{\digamma}j)
\digammai(i\in\{0,1,2\})