Rh disease explained

Rh disease
Synonyms:Rhesus isoimmunization, Rh (D) disease, rhesus incompatibility
Causes:Incompatibility between mother antibodies and fetal Rhesus factor
Diagnosis:Blood compatibility testing, sonography, physical assessment
Specialty:Paediatrics, haematology, transfusion medicine
Prevention:Administration of antibody therapy to the mother
Treatment:Prophylactic antibody therapy, intrauterine transfusion
Medication:Rho(D) immune globulin
Frequency:Of maternal-fetal blood incompatibilities: 16% without antibody therapy, 0.1% with therapy

Rh disease (also known as rhesus isoimmunization, Rh (D) disease, or rhesus incompatibility, and blue baby disease) is a type of hemolytic disease of the fetus and newborn (HDFN). HDFN due to anti-D antibodies is the proper and currently used name for this disease as the Rh blood group system actually has more than 50 antigens and not only the D-antigen. The term "Rh Disease" is commonly used to refer to HDFN due to anti-D antibodies, and prior to the discovery of anti-Rho(D) immune globulin, it was the most common type of HDFN. The disease ranges from mild to severe, and occurs in the second or subsequent pregnancies of Rh-D negative women when the biologic father is Rh-D positive.

Due to several advances in modern medicine, HDFN due to anti-D is preventable by treating the mother during pregnancy and soon after delivery with an injection of anti-Rho(D) immune globulin (Rhoclone, Rhogam, AntiD). With successful mitigation of this disease by prevention through the use of anti-Rho(D) immune globulin, other antibodies are more commonly the cause of HDFN today.

Signs and symptoms

Symptoms of Rh disease include yellowish amniotic fluid and enlarged spleen, liver or heart or buildup of fluid in the abdomen of the fetus.[1]

Pathophysiology

During the first pregnancy, the Rh- mother's initial exposure to fetal Rh+ red blood cells (RBCs) is usually not sufficient to activate her Rh-recognizing B cells. However, during delivery, the placenta separates from the uterine wall, causing umbilical cord blood to enter the maternal circulation, which results in the mother's proliferation of IgM-secreting plasma B cells to eliminate the fetal Rh+ cells from her blood stream. IgM antibodies do not cross the placental barrier, which is why no effects to the fetus are seen in first pregnancies for Rh-D mediated disease. However, in subsequent pregnancies with Rh+ fetuses, the IgG memory B cells mount an immune response when re-exposed, and these IgG anti-Rh(D) antibodies do cross the placenta and enter fetal circulation. These antibodies are directed against the Rhesus (Rh) factor, a protein found on the surface of the fetal RBCs. The antibody-coated RBCs are destroyed by IgG antibodies binding and activating complement pathways.[2]

The resulting anemia has multiple sequelae:[3] [4] [5]

  1. The immature haematopoietic system of the fetus is taxed as the liver and spleen attempt to put immature RBCs into circulation (erythroblasts, thus the previous name for this disease erythroblastosis fetalis).
  2. As the liver and spleen enlarge under this unexpected demand for RBCs, a condition called portal hypertension develops, and this taxes the immature heart and circulatory system.
  3. Liver enlargement and the prolonged need for RBC production results in decreased ability to make other proteins, such as albumin, and this decreases the plasma colloid osmotic pressure (the fluid-retaining ability of blood plasma) leading to leakage of fluid into tissues and body cavities, termed hydrops fetalis.
  4. The severe anemia taxes the heart to compensate by increasing output in an effort to deliver oxygen to the tissues and results in a condition called high output cardiac failure.
  5. If left untreated, the result may be fetal death.

The destruction of RBCs leads to elevated bilirubin levels (hyperbilirubinemia) as a byproduct. This is not generally a problem during pregnancy, as the maternal circulation can compensate. However, once the infant is delivered, the immature system is not able to handle this amount of bilirubin alone and jaundice or kernicterus (bilirubin deposition in the brain) can develop which may lead to brain damage or death. Sensitizing events during pregnancy include c-section, miscarriage, therapeutic abortion, amniocentesis, ectopic pregnancy, abdominal trauma and external cephalic version. However, in many cases there was no apparent sensitizing event. Approximately 50% of Rh-D positive infants with circulating anti-D are either unaffected or only mildly affected requiring no treatment at all and only monitoring. An additional 20% are severely affected and require transfusions while still in the uterus. This pattern is similar to other types of HDFN due to other commonly encountered antibodies (anti-c, anti-K, and Fy(a)).

Diagnosis

Maternal blood

In the United States, it is a standard of care to test all expecting mothers for the presence or absence of the RhD protein on their RBCs. However, when medical care is unavailable or prenatal care not given for any other reason, the window to prevent the disease may be missed. In addition, there is more widespread use of molecular techniques to avoid missing women who appear to be Rh-D positive but are actually missing portions of the protein or have hybrid genes creating altered expression of the protein and still at risk of HDFN due to Anti-D.[6] [7]

Paternal blood

Blood is generally drawn from the biological father to help determine fetal antigen status.[9] If he is homozygous for the antigen, there is a 100% chance of all offspring in the pairing to be positive for the antigen and at risk for HDFN. If he is heterozygous, there is a 50% chance of offspring to be positive for the antigen.[10]

Prevention

In an RhD negative mother, Rho(D) immune globulin can prevent temporary sensitization of the maternal immune system to RhD antigens, which can cause rhesus disease in the current or in subsequent pregnancies. With the widespread use of RhIG, Rh disease of the fetus and newborn has almost disappeared in the developed world. The risk that an RhD negative mother can be alloimmunized by a RhD positive fetus can be reduced from approximately 16% to less than 0.1% by the appropriate administration of RhIG.

Management

As medical management advances in this field, it is important that these patients be followed by high risk obstetricians/maternal-fetal medicine, and skilled neonatologists postpartum to ensure the most up to date and appropriate standard of care

Antenatal

Postnatal

History

In 1939 Drs. Philip Levine and Rufus E. Stetson published their findings about a 25-year-old mother who had a stillborn baby that died of hemolytic disease of the newborn.[14] Both parents were blood group O, so the husband's blood was used to give his wife a blood transfusion due to blood loss during delivery. However, she had a severe transfusion reaction. Since both parents were blood group O, which was believed to be compatible for transfusion, they concluded that there must be a previously undiscovered blood group antigen that was present on the husband's red blood cells (RBCs) but not present on his wife's. This suggested for the first time that a mother could make blood group antibodies because of immune sensitization to her fetus's RBCs as her only previous exposure would be the earlier pregnancy. They did not name this blood group antigen at the time, which is why the discovery of the rhesus blood type is credited to Drs. Karl Landsteiner and Alexander S. Wiener[15] with their first publication of their tables for blood-typing and cross-matching in 1940, which was the culmination of years of work. However, there were multiple participants in this scientific race and almost simultaneous publications on this topic. Levine published his theory that the disease known as erythroblastosis fetalis was due to Rh alloimmunization in 1941 while Landsteiner and Wiener published their method to type patients for an antibody causing transfusion reactions, known as “Rh".[16] [17] [18]

The first treatment for Rh disease was an exchange transfusion invented by Wiener[19] and later refined by Dr. Harry Wallerstein.[20] Approximately 50,000 infants received this treatment. However, this could only treat the disease after it took root and did not do anything to prevent the disease. In 1960, Ronald Finn, in Liverpool, England proposed that the disease might be prevented by injecting the at-risk mother with an antibody against fetal red blood cells (anti-RhD).[21] Nearly simultaneously, Dr. William Pollack,[22] an immunologist and protein chemist at Ortho Pharmaceutical Corporation, and Dr. John Gorman (blood bank director at Columbia-Presbyterian) with Dr. Vincent Freda (an obstetrician at Columbia-Presbyterian Medical Center), came to the same realization in New York City. The three of them set out to prove it by injecting a group of male prisoners at Sing Sing Correctional Facility with antibody provided by Ortho, obtained by a fractionation technique developed by Pollack.[23]

Animal studies had previously been conducted by Dr. Pollack using a rabbit model of Rh.[24] This model, named the rabbit HgA-F system, was an animal model of human Rh, and enabled Pollack's team to gain experience in preventing hemolytic disease in rabbits by giving specific HgA antibody, as was later done with Rh-negative mothers. One of the needs was a dosing experiment that could be used to determine the level of circulating Rh-positive cells in an Rh-negative pregnant female derived from her Rh-positive fetus. This was first done in the rabbit system, but subsequent human tests at the University of Manitoba conducted under Dr. Pollack's direction confirmed that anti-Rho(D) immune globulin could prevent alloimmunization during pregnancy.

Ms. Marianne Cummins was the first at risk woman to receive a prophylactic injection of anti-Rho(D) immune globulin (RHIG) after its regulatory approval.[25] Clinical trials were set up in 42 centers in the US, Great Britain, Germany, Sweden, Italy, and Australia. RHIG was finally approved in England and the United States in 1968.[26] The FDA approved the drug under the brand name RhoGAM, with a fixed dose of 300 μg, to be given within three days (72 hours) postpartum. Subsequently, a broader peripartum period was approved for dosing which included prophylaxis during pregnancy. Within a year, the antibody had been injected with great success into more than 500,000 women. Time magazine picked it as one of the top ten medical achievements of the 1960s. By 1973, it was estimated that in the US alone, over 50,000 babies' lives had been saved. The use of Rh immune globulin to prevent the disease in babies of Rh negative mothers has become standard practice, and the disease, which used to claim the lives of 10,000 babies each year in the US alone, has been virtually eradicated in the developed world. In 1980, Cyril Clarke, Ronald Finn, John G. Gorman, Vincent Freda, and William Pollack each received an Albert Lasker Award for Clinical Medical Research for their work on rhesus blood types and the prevention of Rh disease.

See also

Further reading

External links

Notes and References

  1. Web site: 2014-08-23. Rh Disease. 2021-11-21. The Children's Hospital of Philadelphia. en.
  2. Book: Punt J, Stranford S, Jones P, Owen JA . 2018 . Chapter 15: Allergy, Hypersensitivities, and Chronic Inflammation. . Kuby immunology . 8th . 1086–1087 . WH Freeman .
  3. Book: Maitra A . Diseases of Infancy and Childhood . 2010 . 447–483 . Elsevier . 9781437707922 . 10.1016/b978-1-4377-0792-2.50015-8 . 5182838 . Robbins and Cotran Pathologic Basis of Disease . The Indian Medical Gazette . 43 . 6.
  4. Book: Alloimmune cytopenias. . Pediatric Transfusion: A physician's handbook. . 4th . Wong EC . AABB. 2015. 45–61.
  5. Book: Technical Manual. . 18th . Fung MK, Grossman BJ, Hillyer CD, Westhoff CM, eds . AABB . 2014 . Bethesda, MD.
  6. Kacker S, Vassallo R, Keller MA, Westhoff CM, Frick KD, Sandler SG, Tobian AA . Financial implications of RHD genotyping of pregnant women with a serologic weak D phenotype . Transfusion . 55 . 9 . 2095–2103 . September 2015 . 25808011 . 4739823 . 10.1111/trf.13074 .
  7. Fasano RM . Hemolytic disease of the fetus and newborn in the molecular era . Seminars in Fetal & Neonatal Medicine . 21 . 1 . 28–34 . February 2016 . 26589360 . 10.1016/j.siny.2015.10.006 .
  8. Finning K, Martin P, Summers J, Daniels G . Fetal genotyping for the K (Kell) and Rh C, c, and E blood groups on cell-free fetal DNA in maternal plasma . Transfusion . 47 . 11 . 2126–2133 . November 2007 . 17958542 . 10.1111/j.1537-2995.2007.01437.x . 8292568 .
  9. Scheffer PG, van der Schoot CE, Page-Christiaens GC, de Haas M . Noninvasive fetal blood group genotyping of rhesus D, c, E and of K in alloimmunised pregnant women: evaluation of a 7-year clinical experience . BJOG . 118 . 11 . 1340–1348 . October 2011 . 21668766 . 10.1111/j.1471-0528.2011.03028.x . 32946225 .
  10. Transfusion Medicine and Hemostasis: Clinical and Laboratory Aspects
  11. Web site: Percutaneous Umbilical Cord Blood Sampling. pennmedicine.adam.com. 2019-09-11.
  12. Gottstein R, Cooke RW . Systematic review of intravenous immunoglobulin in haemolytic disease of the newborn . Archives of Disease in Childhood. Fetal and Neonatal Edition . 88 . 1 . F6-10 . January 2003 . 12496219 . 1755998 . 10.1136/fn.88.1.F6 .
  13. Webb J, Delaney M . Red Blood Cell Alloimmunization in the Pregnant Patient . Transfusion Medicine Reviews . 32 . 4 . 213–219 . October 2018 . 30097223 . 10.1016/j.tmrv.2018.07.002 . 51958636 .
  14. Levine P, Stetson RE . 1939 . An Unusual Case of Intra-Group Agglutination . Journal of the American Medical Association . 113 . 2 . 126–7 . 10.1001/jama.1939.72800270002007a.
  15. Landsteiner K, Wiener AS . 58298368 . 1940. An Agglutinable Factor in Human Blood Recognized by Immune Sera for Rhesus Blood. Experimental Biology and Medicine. 43. 223. 10.3181/00379727-43-11151.
  16. Landsteiner K, Wiener AS . STUDIES ON AN AGGLUTINOGEN (Rh) IN HUMAN BLOOD REACTING WITH ANTI-RHESUS SERA AND WITH HUMAN ISOANTIBODIES . The Journal of Experimental Medicine . 74 . 4 . 309–320 . September 1941 . 19871137 . 2135190 . 10.1084/jem.74.4.309 . free .
  17. Levine P, Vogel P, Katzin EM, Burnham L . Pathogenesis of Erythroblastosis Fetalis: Statistical Evidence . Science . 94 . 2442 . 371–372 . October 1941 . 17820878 . 10.1126/science.94.2442.371 . 1941Sci....94..371L .
  18. Book: Rh: The Intimate History of a Disease and Its Conquest. registration. Zimmerman DR . Macmillan Publishing Co. 1973.
  19. Reid ME . Alexander S. Wiener: the man and his work . Transfusion Medicine Reviews . 22 . 4 . 300–316 . October 2008 . 18848157 . 10.1016/j.tmrv.2008.05.007 . free .
  20. Wallerstein H . Treatment of severe erythroblastosis by simultaneous removal and replacement of the blood of the newborn infant . Science . 103 . 2680 . 583–584 . May 1946 . 21026828 . 10.1126/science.103.2680.583 . 1946Sci...103..583W .
  21. Wright P . Ronald Finn . Lancet . 363 . 9427 . 2195 . June 2004 . 15248345 . 10.1016/S0140-6736(04)16525-2 . 2243030 . free .
  22. Web site: William Pollack dies at 87; helped conquer deadly Rh disease. 2013-11-17. Los Angeles Times. 2019-09-11.
  23. Freda VJ, Gorman JG, Pollack W . Successful Prevention of Experimental Rh Sensitization in Man With an Anti-Rh gamma2-Globulin Antibody Preparation: A Preliminary Report . Transfusion . 4 . 26–32 . January 1964 . 14105934 . 10.1111/j.1537-2995.1964.tb02824.x . 35474015 .
  24. Pollack W, Gorman JG, Hager HJ, Freda VJ, Tripodi D . Antibody-mediated immune suppression to the Rh factor: animal models suggesting mechanism of action . Transfusion . 8 . 3 . 134–145 . 1968-05-06 . 4173360 . 10.1111/j.1537-2995.1968.tb04891.x . 10535055 . free .
  25. Vossoughi S, Spitalnik SL . Conquering erythroblastosis fetalis: 50 years of RhIG . Transfusion . 59 . 7 . 2195–2196 . July 2019 . 31268587 . 10.1111/trf.15307 . 195786606 .
  26. Pollack W, Gorman JG, Freda VJ, Ascari WQ, Allen AE, Baker WJ . Results of clinical trials of RhoGAM in women . Transfusion . 8 . 3 . 151–153 . 1968-05-06 . 4173363 . 10.1111/j.1537-2995.1968.tb04895.x . 42240813.