Relaxor ferroelectric explained

Relaxor ferroelectrics are ferroelectric materials that exhibit high electrostriction., although they have been studied for over fifty years,[1] the mechanism for this effect is still not completely understood, and is the subject of continuing research.[2] [3] [4]

Examples of relaxor ferroelectrics include:

Applications

Relaxor Ferroelectric materials find application in high efficiency energy storage and conversion as they have high dielectric constants, orders-of-magnitude higher than those of conventional ferroelectric materials. Like conventional ferroelectrics, Relaxor Ferroelectrics show permanent dipole moment in domains. However, these domains are on the nano-length scale, unlike conventional ferroelectrics domains that are generally on the micro-length scale, and take less energy to align. Consequently, Relaxor Ferroelectrics have very high specific capacitance and have thus generated interest in the fields of energy storage. Furthermore, due to their slim hysteresis curve with high saturated polarization and low remnant polarization, Relaxor ferroelectrics have high discharge energy density and high discharge rates. BT-BZNT Multilayer Energy Storage Ceramic Capacitors (MLESCC) were experimentally determined to have very high efficiency(>80%) and stable thermal properties over a wide temperature range.

Notes and References

  1. 10.1007/s10853-005-5915-7. Recent progress in relaxor ferroelectrics with perovskite structure. Journal of Materials Science. 41. 1. 31. 2006. Bokov . A. A.. Ye . Z. -G. . 2006JMatS..41...31B . 189842194.
  2. 10.1103/PhysRevLett.110.147602. Anisotropic Local Correlations and Dynamics in a Relaxor Ferroelectric. Physical Review Letters. 110. 14. 2013. Takenaka . H. . Grinberg . I. . Rappe . A. M. . 1212.0867 . 2013PhRvL.110n7602T . 25167037 . 147602. 9758988.
  3. Ganesh. P.. Cockayne. E.. Ahart. M.. Cohen. R. E.. Burton. B.. Hemley. Russell J.. Ren. Yang. Yang. Wenge. Ye. Z.-G.. 2010-04-05. Origin of diffuse scattering in relaxor ferroelectrics. Physical Review B. 81. 14. 144102. 10.1103/PhysRevB.81.144102. 0908.2373. 2010PhRvB..81n4102G. 119279021.
  4. Phelan. Daniel. Stock. Christopher. Rodriguez-Rivera. Jose A.. Chi. Songxue. Leão. Juscelino. Long. Xifa. Xie. Yujuan. Bokov. Alexei A.. Ye. Zuo-Guang. 2014. Role of random electric fields in relaxors. Proceedings of the National Academy of Sciences. 111. 5. 1754–1759. 10.1073/pnas.1314780111. 0027-8424. 24449912. 3918832. 1405.2306. 2014PNAS..111.1754P. free.
  5. 10.1007/s10853-005-5915-7. Recent progress in relaxor ferroelectrics with perovskite structure. Journal of Materials Science. 41. 1. 31–52. 2006. Bokov . A. A.. Ye . Z. -G. . 2006JMatS..41...31B . 189842194.
  6. News: Shipman. Matt. Atomic Structure of Ultrasound Material Not What Anyone Expected. NC State News. 20 February 2018. en.
  7. Cabral. Matthew J.. Zhang. Shujun. Elizabeth Dickey. Dickey. Elizabeth C.. LeBeau. James M.. Gradient chemical order in the relaxor Pb(MgNb)O. Applied Physics Letters. 19 February 2018. 112. 8. 082901. 10.1063/1.5016561. 2018ApPhL.112h2901C.
  8. Book: and, and. Proceedings., Second International Conference on Properties and Applications of Dielectric Materials . Lead magnesium niobate relaxor ferroelectric ceramics of low-firing for multilayer capacitors . September 1988. 125–128 vol.1. 10.1109/ICPADM.1988.38349. 137495812.
  9. Brown. Emery. Ma. Chunrui. Acharya. Jagaran. Ma. Beihai. Wu. Judy. Li. Jun. 2014-12-24. Controlling Dielectric and Relaxor-Ferroelectric Properties for Energy Storage by Tuning Pb0.92La0.08Zr0.52Ti0.48O3 Film Thickness. ACS Applied Materials & Interfaces. 6. 24. 22417–22422. 10.1021/am506247w. 25405727. 1392947. 1944-8244.
  10. Drnovšek. Silvo. Casar. Goran. Uršič. Hana. Bobnar. Vid. 2013-10-01. Distinctive contributions to dielectric response of relaxor ferroelectric lead scandium niobate ceramic system. Physica Status Solidi B. 250. 10. 2232–2236. 10.1002/pssb.201349259. 2013PSSBR.250.2232B . 119554924 . 1521-3951.
  11. Zhao. Peiyao. Wang. Hongxian. Wu. Longwen. Chen. Lingling. Cai. Ziming. Li. Longtu. Wang. Xiaohui. High-Performance Relaxor Ferroelectric Materials for Energy Storage Applications. Advanced Energy Materials. 17. 1803048. 10.1002/aenm.201803048. 1614-6840. 2019. 9. 107988812 .
  12. Ortega. N. Kumar. A. Scott. J F. Chrisey. Douglas B. Tomazawa. M. Kumari. Shalini. Diestra. D G B. Katiyar. R S. 2012-10-10. Relaxor-ferroelectric superlattices: high energy density capacitors. Journal of Physics: Condensed Matter. 24. 44. 445901. 10.1088/0953-8984/24/44/445901. 23053172. 2012JPCM...24R5901O. 25298142. 0953-8984.