In mathematics, a hexadecagon (sometimes called a hexakaidecagon or 16-gon) is a sixteen-sided polygon.[1]
A regular hexadecagon is a hexadecagon in which all angles are equal and all sides are congruent. Its Schläfli symbol is and can be constructed as a truncated octagon, t, and a twice-truncated square tt. A truncated hexadecagon, t, is a triacontadigon, .
As 16 = 24 (a power of two), a regular hexadecagon is constructible using compass and straightedge: this was already known to ancient Greek mathematicians.[2]
Each angle of a regular hexadecagon is 157.5 degrees, and the total angle measure of any hexadecagon is 2520 degrees.
The area of a regular hexadecagon with edge length t is
\begin{align} A=4t2\cot
\pi | |
16 |
=&4t2\left(1+\sqrt{2}+\sqrt{4+2\sqrt{2}}\right)\\ =&4t2(\sqrt{2}+1)(\sqrt{4-2\sqrt{2}}+1) .\end{align}
Because the hexadecagon has a number of sides that is a power of two, its area can be computed in terms of the circumradius R by truncating Viète's formula:
| |||||
A=R | ⋅ |
2 | |
\sqrt{2 |
Since the area of the circumcircle is
\piR2,
The 14 symmetries of a regular hexadecagon. Lines of reflections are blue through vertices, purple through edges, and gyration orders are given in the center. Vertices are colored by their symmetry position. |
On the regular hexadecagon, there are 14 distinct symmetries. John Conway labels full symmetry as r32 and no symmetry is labeled a1. The dihedral symmetries are divided depending on whether they pass through vertices (d for diagonal) or edges (p for perpendiculars) Cyclic symmetries in the middle column are labeled as g for their central gyration orders.[3]
The most common high symmetry hexadecagons are d16, an isogonal hexadecagon constructed by eight mirrors can alternate long and short edges, and p16, an isotoxal hexadecagon constructed with equal edge lengths, but vertices alternating two different internal angles. These two forms are duals of each other and have half the symmetry order of the regular hexadecagon.
Each subgroup symmetry allows one or more degrees of freedom for irregular forms. Only the g16 subgroup has no degrees of freedom but can be seen as directed edges.
Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms.[4] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. For the regular hexadecagon, m=8, and it can be divided into 28: 4 squares and 3 sets of 8 rhombs. This decomposition is based on a Petrie polygon projection of an 8-cube, with 28 of 1792 faces. The list enumerates the number of solutions as 1232944, including up to 16-fold rotations and chiral forms in reflection.
A regular skew hexadecagon is vertex-transitive with equal edge lengths. In 3-dimensions it will be a zig-zag skew hexadecagon and can be seen in the vertices and side edges of an octagonal antiprism with the same D8d, [2<sup>+</sup>,16] symmetry, order 32. The octagrammic antiprism, s and octagrammic crossed-antiprism, s also have regular skew octagons.
The regular hexadecagon is the Petrie polygon for many higher-dimensional polytopes, shown in these skew orthogonal projections, including:
A hexadecagram is a 16-sided star polygon, represented by symbol . There are three regular star polygons,,,, using the same vertices, but connecting every third, fifth or seventh points. There are also three compounds: is reduced to 2 as two octagons, is reduced to 4 as four squares and reduces to 2 as two octagrams, and finally is reduced to 8 as eight digons.
Compound and star hexadecagons | |||||
---|---|---|---|---|---|
Form | Convex polygon | Compound | Star polygon | Compound | |
valign=center | Image | or | or 2 | or 4 | |
Interior angle | 157.5° | 135° | 112.5° | 90° | |
Form | Star polygon | Compound | Star polygon | Compound | |
valign=center | Image | or 2 | or 8 | ||
Interior angle | 67.5° | 45° | 22.5° | 0° |
Deeper truncations of the regular octagon and octagram can produce isogonal (vertex-transitive) intermediate hexadecagram forms with equally spaced vertices and two edge lengths.[5]
A truncated octagon is a hexadecagon, t=. A quasitruncated octagon, inverted as, is a hexadecagram: t=. A truncated octagram is a hexadecagram: t= and a quasitruncated octagram, inverted as, is a hexadecagram: t=.
In the early 16th century, Raphael was the first to construct a perspective image of a regular hexadecagon: the tower in his painting The Marriage of the Virgin has 16 sides, elaborating on an eight-sided tower in a previous painting by Pietro Perugino.[6]
Hexadecagrams (16-sided star polygons) are included in the Girih patterns in the Alhambra.[7]
An octagonal star can be seen as a concave hexadecagon:
The latter one is seen in many architectures from Christian to Islamic, and also in the logo of IRIB TV4.