Recombinant AAV mediated genome engineering explained
Recombinant adeno-associated virus (rAAV) based genome engineering is a genome editing platform centered on the use of recombinant AAV vectors that enables insertion, deletion or substitution of DNA sequences into the genomes of live mammalian cells. The technique builds on Mario Capecchi and Oliver Smithies' Nobel Prize–winning discovery that homologous recombination (HR), a natural hi-fidelity DNA repair mechanism, can be harnessed to perform precise genome alterations in mice. rAAV mediated genome-editing improves the efficiency of this technique to permit genome engineering in any pre-established and differentiated human cell line, which, in contrast to mouse ES cells, have low rates of HR.
The technique has been widely adopted for use in engineering human cell lines to generate isogenic human disease models. It has also been used to optimize bioproducer cell lines for the biomanufacturing of protein vaccines and therapeutics. In addition, due to the non-pathogenic nature of rAAV, it has emerged as a desirable vector for performing gene therapy in live patients.
rAAV Vector
The rAAV genome is built of single-stranded deoxyribonucleic acid (ssDNA), either positive- or negative-sensed, which is about 4.7 kilobases long. These single-stranded DNA viral vectors have high transduction rates and have a unique property of stimulating endogenous HR without causing double strand DNA breaks in the genome, which is typical of other homing endonuclease mediated genome editing methods.
Capabilities
Users can design a rAAV vector to any target genomic locus and perform both gross and subtle endogenous gene alterations in mammalian somatic cell-types. These include gene knock-outs for functional genomics, or the ‘knock-in’ of protein tag insertions to track translocation events at physiological levels in live cells. Most importantly, rAAV targets a single allele at a time and does not result in any off-target genomic alterations.[1] Because of this, it is able to routinely and accurately model genetic diseases caused by subtle SNPs or point mutations that are increasingly the targets of novel drug discovery programs.
Applications
To date, the use of rAAV mediated genome engineering has been published in over 2100 peer reviewed scientific journals.[2] Another emerging application of rAAV based genome editing is for gene therapy in patients, due to the accuracy and lack of off-target recombination events afforded by the approach.
See also
Sources
- Bardelli A, Parsons DW, Silliman N, etal . Mutational analysis of the tyrosine kinome in colorectal cancers . Science . 300 . 5621 . 949 . May 2003 . 12738854 . 10.1126/science.1082596 . 85934154 .
- Kohli M, Rago C, Lengauer C, Kinzler KW, Vogelstein B . Facile methods for generating human somatic cell gene knockouts using recombinant adeno-associated viruses . Nucleic Acids Res. . 32 . 1 . 3e–3 . 2004 . 14704360 . 373311 . 10.1093/nar/gnh009 .
- Wang Z, Shen D, Parsons DW, etal . Mutational analysis of the tyrosine phosphatome in colorectal cancers . Science . 304 . 5674 . 1164–6 . May 2004 . 15155950 . 10.1126/science.1096096 . 2004Sci...304.1164W . 2974833 .
- Dhanushkodi A, Akano EO, Roguski EE, Xue Y, Rao SK, Matta SG, Rex, TS, & McDonald MP. A single intramuscular injection of rAAV-mediated mutant erythropoietin protects against MPTP-induced parkinsonism. Genes, Brain and Behavior. 2013. 12. 2. 224–233. 10.1111/gbb.12001. 23190369. 4360975.
- Topaloglu O, Hurley PJ, Yildirim O, Civin CI, Bunz F . Improved methods for the generation of human gene knockout and knockin cell lines . Nucleic Acids Res. . 33 . 18 . e158 . 2005 . 16214806 . 1255732 . 10.1093/nar/gni160 .
- Moroni M, Sartore-Bianchi A, Benvenuti S, Artale S, Bardelli A, Siena S . Somatic mutation of EGFR catalytic domain and treatment with gefitinib in colorectal cancer . Ann. Oncol. . 16 . 11 . 1848–9 . November 2005 . 16012179 . 10.1093/annonc/mdi356 . free .
- Alberto Bardelli . Di Nicolantonio F, Bardelli A . Kinase mutations in cancer: chinks in the enemy's armour? . Curr Opin Oncol . 18 . 1 . 69–76 . January 2006 . 16357567 . 10.1097/01.cco.0000198020.91724.48. 25857889 .
- Benvenuti S, Sartore-Bianchi A, Di Nicolantonio F, etal . Oncogenic activation of the RAS/RAF signaling pathway impairs the response of metastatic colorectal cancers to anti-epidermal growth factor receptor antibody therapies . Cancer Res. . 67 . 6 . 2643–8 . March 2007 . 17363584 . 10.1158/0008-5472.CAN-06-4158 . free .
- Arena S, Pisacane A, Mazzone M, Comoglio PM, Bardelli A . Genetic targeting of the kinase activity of the Met receptor in cancer cells . Proc. Natl. Acad. Sci. U.S.A. . 104 . 27 . 11412–7 . July 2007 . 17595299 . 2040912 . 10.1073/pnas.0703205104 . 2007PNAS..10411412A . free .
- Konishi H, Karakas B, Abukhdeir AM, etal . Knock-in of mutant K-ras in nontumorigenic human epithelial cells as a new model for studying K-ras mediated transformation . Cancer Res. . 67 . 18 . 8460–7 . September 2007 . 17875684 . 10.1158/0008-5472.CAN-07-0108 . free .
- Arena S, Isella C, Martini M, de Marco A, Medico E, Bardelli A . Knock-in of oncogenic Kras does not transform mouse somatic cells but triggers a transcriptional response that classifies human cancers . Cancer Res. . 67 . 18 . 8468–76 . September 2007 . 17875685 . 10.1158/0008-5472.CAN-07-1126 . free .
- Grim JE, Gustafson MP, Hirata RK, etal . Isoform- and cell cycle-dependent substrate degradation by the Fbw7 ubiquitin ligase . J. Cell Biol. . 181 . 6 . 913–20 . June 2008 . 18559665 . 2426948 . 10.1083/jcb.200802076 .
- Fattah FJ, Lichter NF, Fattah KR, Oh S, Hendrickson EA . Ku70, an essential gene, modulates the frequency of rAAV-mediated gene targeting in human somatic cells . Proc. Natl. Acad. Sci. U.S.A. . 105 . 25 . 8703–8 . June 2008 . 18562296 . 2438404 . 10.1073/pnas.0712060105 . 2008PNAS..105.8703F . free .
- Di Nicolantonio F, Martini M, Molinari F, etal . Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer . J. Clin. Oncol. . 26 . 35 . 5705–12 . December 2008 . 19001320 . 10.1200/JCO.2008.18.0786 . 2434/349662 . free .
- Di Nicolantonio F, Arena S, Gallicchio M, etal . Replacement of normal with mutant alleles in the genome of normal human cells unveils mutation-specific drug responses . Proc. Natl. Acad. Sci. U.S.A. . 105 . 52 . 20864–9 . December 2008 . 19106301 . 2634925 . 10.1073/pnas.0808757105 . 2008PNAS..10520864D . free .
- Gustin JP, Karakas B, Weiss MB, etal . Knockin of mutant PIK3CA activates multiple oncogenic pathways . Proc. Natl. Acad. Sci. U.S.A. . 106 . 8 . 2835–40 . February 2009 . 19196980 . 2636736 . 10.1073/pnas.0813351106 . 2009PNAS..106.2835G . free .
- Sartore-Bianchi A, Martini M, Molinari F, etal . PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies . Cancer Res. . 69 . 5 . 1851–7 . March 2009 . 19223544 . 10.1158/0008-5472.CAN-08-2466 . free .
- Sur S, Pagliarini R, Bunz F, etal . A panel of isogenic human cancer cells suggests a therapeutic approach for cancers with inactivated p53 . Proc. Natl. Acad. Sci. U.S.A. . 106 . 10 . 3964–9 . March 2009 . 19225112 . 2656188 . 10.1073/pnas.0813333106 . 2009PNAS..106.3964S . free .
- Yun J, Rago C, Cheong I, etal . Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells . Science . 325 . 5947 . 1555–9 . September 2009 . 19661383 . 2820374 . 10.1126/science.1174229 . 2009Sci...325.1555Y .
- Sartore-Bianchi A, Di Nicolantonio F, Nichelatti M, etal . Multi-determinants analysis of molecular alterations for predicting clinical benefit to EGFR-targeted monoclonal antibodies in colorectal cancer . PLOS ONE . 4 . 10 . e7287 . 2009 . 19806185 . 2750753 . 10.1371/journal.pone.0007287 . 2009PLoSO...4.7287S . free .
- Endogenous Expression of Oncogenic PI3K Mutation Leads to Activated PI3K Signaling and an Invasive Phenotype Poster Presented at AACR/EORTC Molecular Targets and Cancer Therapeutics, Boston, USA, Nov. 2009
- Bardelli A, Siena S . Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer . J. Clin. Oncol. . 28 . 7 . 1254–61 . March 2010 . 20100961 . 10.1200/JCO.2009.24.6116 .
- Fattah F, Lee EH, Weisensel N, Wang Y, Lichter N, Hendrickson EA . Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells . PLOS Genet. . 6 . 2 . e1000855 . February 2010 . 20195511 . 2829059 . 10.1371/journal.pgen.1000855 . free .
- Buron N, Porceddu M, Brabant M, etal . Use of human cancer cell lines mitochondria to explore the mechanisms of BH3 peptides and ABT-737-induced mitochondrial membrane permeabilization . PLOS ONE . 5 . 3 . e9924 . 2010 . 20360986 . 2847598 . 10.1371/journal.pone.0009924 . 2010PLoSO...5.9924B . free .
- Endogenous Expression of Oncogenic PI3K Mutation Leads to accumulation of anti-apoptotic proteins in mitochondria Poster Presented at AACR 2010, Washington, D.C., USA, April. 2010
- The use of ‘X-MAN’ isogenic cell lines to define PI3-kinase inhibitor activity profiles Poster Presented at AACR 2010, Washington, D.C., USA, April. 2010
- The use of ‘X-MAN’ mutant PI3CA increases the expression of individual tubulin isoforms and promoted resistance to anti-mitotic chemotherapy drugs Poster Presented at AACR 2010, Washington, D.C., USA, April. 2010
- Di Nicolantonio F, Arena S, Tabernero J, etal . Deregulation of the PI3K and KRAS signaling pathways in human cancer cells determines their response to everolimus . J. Clin. Invest. . 120 . 8 . 2858–66 . August 2010 . 20664172 . 2912177 . 10.1172/JCI37539 .
- Kim YG, Cha J, Chandrasegaran S . Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain . Proc. Natl. Acad. Sci. U.S.A. . 93 . 3 . 1156–60 . February 1996 . 8577732 . 40048 . 10.1073/pnas.93.3.1156. 1996PNAS...93.1156K . free .
- Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I . FokI dimerization is required for DNA cleavage . Proc. Natl. Acad. Sci. U.S.A. . 95 . 18 . 10570–5 . September 1998 . 9724744 . 27935 . 10.1073/pnas.95.18.10570. 1998PNAS...9510570B . free .
- Cathomen T, Joung JK . Zinc-finger nucleases: the next generation emerges . Mol. Ther. . 16 . 7 . 1200–7 . July 2008 . 18545224 . 10.1038/mt.2008.114 . free .
- Pabo CO, Peisach E, Grant RA . Design and selection of novel Cys2His2 zinc finger proteins . Annu. Rev. Biochem. . 70 . 313–40 . 2001 . 11395410 . 10.1146/annurev.biochem.70.1.313 .
- Ramirez CL, Foley JE, Wright DA, etal . Unexpected failure rates for modular assembly of engineered zinc fingers . Nat. Methods . 5 . 5 . 374–5 . May 2008 . 18446154 . 10.1038/nmeth0508-374 . 7880305 .
- Maeder ML, Thibodeau-Beganny S, Osiak A, etal . Rapid "open-source" engineering of customized zinc-finger nucleases for highly efficient gene modification . Mol. Cell . 31 . 2 . 294–301 . July 2008 . 18657511 . 2535758 . 10.1016/j.molcel.2008.06.016 .
- Ochiai H, Fujita K, Suzuki K, etal . Targeted mutagenesis in the sea urchin embryo using zinc-finger nucleases . Genes Cells . 15 . 8 . 875–85 . August 2010 . 20604805 . 10.1111/j.1365-2443.2010.01425.x . free .
- Shukla VK, Doyon Y, Miller JC, etal . Precise genome modification in the crop species Zea mays using zinc-finger nucleases . Nature . 459 . 7245 . 437–41 . May 2009 . 19404259 . 10.1038/nature07992 . 2009Natur.459..437S. 4323298 .
- Ekker SC . Zinc finger-based knockout punches for zebrafish genes . Zebrafish . 5 . 2 . 121–3 . 2008 . 18554175 . 2849655 . 10.1089/zeb.2008.9988 .
- Carroll D . Progress and prospects: zinc-finger nucleases as gene therapy agents . Gene Ther. . 15 . 22 . 1463–8 . November 2008 . 18784746 . 2747807 . 10.1038/gt.2008.145 .
- Geurts AM, Cost GJ, Freyvert Y, etal . Knockout rats via embryo microinjection of zinc-finger nucleases . Science . 325 . 5939 . 433 . July 2009 . 19628861 . 2831805 . 10.1126/science.1172447 . 2009Sci...325..433G .
- Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S . Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells . Nucleic Acids Res. . 33 . 18 . 5978–90 . 2005 . 16251401 . 1270952 . 10.1093/nar/gki912 .
- Lee HJ, Kim E, Kim JS . Targeted chromosomal deletions in human cells using zinc finger nucleases . Genome Res. . 20 . 1 . 81–9 . January 2010 . 19952142 . 2798833 . 10.1101/gr.099747.109 .
- Book: Kandavelou K, Chandrasegaran S . Plasmids for Gene Therapy . Lipps, Georg . Plasmids: Current Research and Future Trends . Caister Academic Press . 2008 . 978-1-904455-35-6 .
- Gupta A, Meng X, Zhu LJ, Lawson ND, Wolfe SA . Zinc finger protein-dependent and -independent contributions to the in vivo off-target activity of zinc finger nucleases . Nucleic Acids Res. . 39 . 1 . 381–92 . January 2011 . 20843781 . 3017618 . 10.1093/nar/gkq787 .
- Grizot S, Smith J, Daboussi F, etal . Efficient targeting of a SCID gene by an engineered single-chain homing endonuclease . Nucleic Acids Res. . 37 . 16 . 5405–19 . September 2009 . 19584299 . 2760784 . 10.1093/nar/gkp548 .
- Gao H, Smith J, Yang M, etal . Heritable targeted mutagenesis in maize using a designed endonuclease . Plant J. . 61 . 1 . 176–87 . January 2010 . 19811621 . 10.1111/j.1365-313X.2009.04041.x .
- Christian M, Cermak T, Doyle EL, etal . Targeting DNA double-strand breaks with TAL effector nucleases . Genetics . 186 . 2 . 757–61 . October 2010 . 20660643 . 2942870 . 10.1534/genetics.110.120717 .
- Li T, Huang S, Jiang WZ, etal . TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain . Nucleic Acids Res. . 39 . 1 . 359–72 . January 2011 . 20699274 . 3017587 . 10.1093/nar/gkq704 .
- Moscou MJ, Bogdanove AJ . A simple cipher governs DNA recognition by TAL effectors . Science . 326 . 5959 . 1501 . December 2009 . 19933106 . 10.1126/science.1178817 . 2009Sci...326.1501M. 6648530 .
- Boch J, Scholze H, Schornack S, etal . Breaking the code of DNA binding specificity of TAL-type III effectors . Science . 326 . 5959 . 1509–12 . December 2009 . 19933107 . 10.1126/science.1178811 . 2009Sci...326.1509B . 206522347 .
- Stoddard BL . Homing endonuclease structure and function . Quarterly Reviews of Biophysics . 38 . 1 . 49–95 . 2005 . 10.1017/S0033583505004063 . 16336743. 27841011 .
- Seligman LM, Chisholm KM, Chevalier BS, etal . Mutations altering the cleavage specificity of a homing endonuclease . Nucleic Acids Res. . 30 . 17 . 3870–9 . September 2002 . 12202772 . 137417 . 10.1093/nar/gkf495.
- Sussman D, Chadsey M, Fauce S, etal . Isolation and characterization of new homing endonuclease specificities at individual target site positions . J. Mol. Biol. . 342 . 1 . 31–41 . September 2004 . 15313605 . 10.1016/j.jmb.2004.07.031 .
- Rosen LE, Morrison HA, Masri S, etal . Homing endonuclease I-CreI derivatives with novel DNA target specificities . Nucleic Acids Res. . 34 . 17 . 4791–800 . 2006 . 16971456 . 1635285 . 10.1093/nar/gkl645 .
- Arnould S, Chames P, Perez C, etal . Engineering of large numbers of highly specific homing endonucleases that induce recombination on novel DNA targets . J. Mol. Biol. . 355 . 3 . 443–58 . January 2006 . 16310802 . 10.1016/j.jmb.2005.10.065 .
- Smith J, Grizot S, Arnould S, etal . A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences . Nucleic Acids Res. . 34 . 22 . e149 . 2006 . 17130168 . 1702487 . 10.1093/nar/gkl720 .
- Chevalier BS, Kortemme T, Chadsey MS, Baker D, Monnat RJ, Stoddard BL . Design, activity, and structure of a highly specific artificial endonuclease . Mol. Cell . 10 . 4 . 895–905 . October 2002 . 12419232 . 10.1016/S1097-2765(02)00690-1. free .
- Grizot S, Epinat JC, Thomas S, etal . Generation of redesigned homing endonucleases comprising DNA-binding domains derived from two different scaffolds . Nucleic Acids Res. . 38 . 6 . 2006–18 . April 2010 . 20026587 . 2847234 . 10.1093/nar/gkp1171 .
Notes and References
- Book: Setlow . Genetic Engineering: Principles and Methods, Volume 26 . 2012 . Springer Science & Business Media . 145–187.
- Web site: PubMed Search. 2 June 2021.