Reactive Scientific Research Institute (RNII) | |
Parent: | People's Commissariat of Heavy Industry |
Founder: | Gas Dynamics Laboratory and Group for the Study of Reactive Motion |
Established: | 21 September 1933 |
Key People: | Sergei Korolev, Valentin Glushko |
Address: | Onezhskaya St, 8/10 |
City: | Moscow |
State: | RSFSR |
Country: | USSR |
Coor: | --> |
Dissolved: | 18 February 1944 transferred to the Scientific-Research Institute 1 (NII-1) |
Footnotes: | Awards: |
Reactive Scientific Research Institute (commonly known by the joint initialism RNII; Russian: Реактивный научно-исследовательский институт|Reaktivnyy nauchno-issledovatel’skiy institut) was one of the first Soviet research and development institutions to focus on rocket technology. RNII developed the Katyusha rocket launcher and its research and development were very important for later achievements of the Soviet rocket and space programs.
The 'Reactive Scientific Research Institute' (RNII) was officially established on 21 September 1933 by combining the Group for the Study of Reactive Motion (GIRD) with the Gas Dynamics Laboratory (GDL). Personnel based in Leningrad were relocated to Moscow.[1]
Before 1931 there were two Soviet organizations devoted to researching rocket technology, the Leningrad-based GDL, and the mainly Moscow-based GIRD. The benefits of combining the two groups were recognized, particularly by Marshal Mikhail Tukhachevsky, the deputy People’s Commissar of Military and Naval Affairs (Narkomvoyenmor) and Deputy Chairman of the Revolutionary Military Council (Revvoyensovet). Tukhachevskiy, as a leading Soviet military leader, understood the benefits of rocket technology to military affairs and the requirement that it be supported by research, development, and engineering support.
The first Director of RNII was Ivan Kleymyonov, (1931–1937) the former head of GDL. Sergey Korolev, the previous head of GIRD, was appointed as his deputy. However in 1934, following a disagreement over the direction of RNII, Korolev was demoted to section chief of winged missiles and was replaced by Georgy Langemak. Langemak was also the chairman of the initial technical advisory board, which provided the sanctioned scientific direction of RNII. The initial advisory board was composed of Glushko, Korolev, Pobedonostsev, Tikhonravov, and Dudakov. Other leaders of RNII consisted of Director (30.10.1937 – 1941) and Director (1942–1944).
In the initial period, RNII had four departments:
Total personnel at RNII ranged from 403 in 1935 to a peak of 836 in 1941.[2]
During RNII's existence the following were created:
See main article: RS-82 (rocket family). Design work on RS-82 and RS-132 rockets (RS for Russian: Reaktivnyy Snaryad, 'rocket-projectile') began in the late 1920s at GDL.[3] In 1932 in-air test firings of RS-82 rocket from an Tupolev I-4 aircraft armed with six launchers successfully took place. After September 1933 development was continued by RNII, including designing several variations for ground-to-air, ground-to-ground, air-to-ground and air-to-air combat. The RS-82 rockets were carried by Polikarpov I-15, I-16 and I-153 fighter planes, the Polikarpov R-5 reconnaissance plane and the Ilyushin Il-2 close air support plane, while the heavier RS-132 rockets could be carried by bombers. Many small ships of the Soviet Navy were also fitted with the RS-82 rocket, including the MO-class small guard ship.
The earliest known use by the Soviet Air Force of aircraft-launched unguided anti-aircraft rockets in combat against heavier-than-air aircraft took place in August 1939, during the Battle of Khalkhin Gol. A group of Polikarpov I-16 fighters under command of Captain N. Zvonarev were using RS-82 rockets against Japanese aircraft, shooting down 16 fighters and 3 bombers in total.[4] Six Tupolev SB bombers also used RS-132 for ground attack during the Winter War.
See main article: Katyusha rocket launcher. In June 1938, RNII began developing a multiple rocket launcher based on the RS-132 rocket.[5] Gvay led a team of designers and engineers to build multiple prototype launchers firing the modified 132 mm M-132 rockets over the sides of ZIS-5 trucks. The trucks proved to be unstable, as a solution to this V.N. Galkovskiy proposed mounting the launch rails across the top of the vehicles. In August 1939, the completed rocket was the BM-13 (BM stands for боевая машина (translit. boyevaya mashina), 'combat vehicle' for M-13 rockets).[6]
Towards the end of 1938 the first significant large scale testing of the rocket launchers took place, 233 rockets of various types were used. A salvo of rockets could completely straddle a target at a range of 5500m (18,000feet). Various rocket tests were conducted through 1940, and the BM-13-16 with launch rails for sixteen rockets was authorized for production. Only forty launchers were built before Germany invaded the Soviet Union in June 1941. By the end of the war 12 million rockets of the RS type were produced for the Soviet armed forces.
Development of Liquid propellant rocket engines had previously commenced at both GDL and GIRD. At GDL Valentin Glushko had designed and built a series of ORM (from "Experimental Rocket Motor" in Russian) engines to . This research was continued at RNII with engines ОРМ-53 to ОРМ-102 developed, with powering the RP-318 rocket-powered aircraft. In 1938 Leonid Dushkin replaced Glushko and continued development of the ORM engines, including the engine for the rocket powered interceptor, the Bereznyak-Isayev BI-1.[7] At GIRD Mikhail Tikhonravov had built the GIRD-09 rocket, fueled by liquid oxygen and jellied gasoline, which launched on August 17, 1933. At RNII Tikhonravov worked on developing oxygen/alcohol liquid-propellant rocket engines. Ultimately liquid propellant rocket engines were given a low priority during the late 1930s at RNII, however the research was productive and very important for later achievements of the Soviet rocket program.
See main article: Korolyov RP-318. The RP-318 was USSR's first rocket-powered aircraft (Rocketry Planer or Raketoplan) which "RP" stands for in Russian language. Built in 1936 by Sergei Korolev as an adaptation of his SK-9 glider, the RP-318 was originally designed as a flying laboratory to test rocket engines and ORM-65 designed by Valentin Glushko was the one selected to be used. In 1938, when both Korolev and Glushko were arrested in suspicion of Anti-Soviet activity, development of the RP-318-1 was continued by Alexei Scherbakov (Щербаков, Алексей Яковлевич) and Arvid Pallo (Палло, Арвид Владимирович), culminating in the first powered flight on Feb. 28, 1940. Test pilot V. P. Fedorov (Владимир Павлович Фёдоров) was towed to 2,600 m and cast off at 80 km/h before firing the rocket engine and accelerating the aircraft to 140 km/h and an altitude of 2,900 m. In all, the RP-318 flew nine times before World War II ended its development.[8]
During the 1930s Soviet rocket technology was comparable to Germany's, however Joseph Stalin's Great Purge severely damaged its progress. RNII was particularly affected with Director Kleymyonov and Chief Engineer Langemak arrested in November 1937, and later executed. Glushko was arrested in March 1938 and with many other leading engineers was imprisoned in the Gulag. Korolev was arrested in June 1938 and sent to a forced labour camp in Kolyma in June 1939. However, due to the intervention by Andrei Tupolev, he was relocated to a prison for scientist and engineers in September 1940. From 1937 to 1944 no serious work was carried out on long range rockets as weapons, or for space exploration.
In February 1944, the institute merged with Design Bureau OKB-293, led by Soviet engineer Viktor Bolkhovitinov, which had developed the short-range rocket powered interceptor called Bereznyak-Isayev BI-1. The new organisation was named Scientific-Research Institute 1 (NII-1), and became the responsibility of the People’s Commissariat of Aviation Industry.
In 1965, NII-1 was re-named the Scientific-Research Institute for Thermal Processes (NII TP) and became part of the newly created Ministry of General Machine Building, which was responsible for all issues related to strategic ballistic missiles and space technology in the USSR.[9]
In 1992, NII TP became part of Rosaviakosmos and in 1993 was renamed the Keldysh Research Center.
A number of writers have noted the importance of RNII to the future Soviet space program, including Siddiqi:
and Chertok: