Ravi Iyengar Explained
Ravi Iyengar, is a principal investigator at The Mount Sinai Medical Center.[1] [2]
Trained as a biochemist, Iyengar studies cellular signaling networks using both experiments and computer simulations. His laboratory focuses on how cell signals are routed and processed through cellular signaling networks within cells to discover new drug targets for complex diseases.[3] [4] [5] He has published more than 100 primary papers, 92 reviews and is the editor of 6 books.
Biography
Iyengar earned both an undergraduate degree in Chemistry and Physics in 1971 and a master's degree in Biophysics in 1973 from the University of Mumbai in India. He completed his Ph.D. in Biophysical Sciences at the University of Houston in 1977. He joined Baylor College of Medicine in 1977 as a postdoctoral fellow and rose to assistant and then associate professor. In 1986, he joined the Department of Pharmacology at The Mount Sinai Medical Center as an associate professor. In 1999, he was appointed chairman of the Department of Pharmacology at Mount Sinai, and in 2001 he was named Mount Sinai's Dorothy H. and Lewis Rosenstiel Professor and chair of the Department of Pharmacology and Biological Chemistry. He stepped down from his position as chair in January 2014.
Iyengar served as the dean of research for The Mount Sinai School of Medicine from 2002 to 2004.
In 2004, Iyengar was elected fellow of the American Association for the Advancement of Science.[6] Additional honors include:
Iyengar holds Patent No. 20080261820: Methods to Analyze Biological Networks.[7]
Research grants
- Structure and Function of Signal Transducing Components, 5R01DK03876-21, National Institute of Diabetes and Digestive and Kidney Diseases
- Dynamics Underlying Tissue Integrity, 1R01DK087650-01, National Institute of Diabetes and Digestive Diseases and Kidney Diseases[8]
- Systems Biology Center in New York, 5P50GM071558-03, National Institute of General Medical Sciences[9]
- Functions of Regulatory Motifs in Signaling Networks, 5R01GM054508-21, National Institute of General Medical Sciences[10]
- Modeling Cell Regulatory Networks, 5R01GM072853-04, National Institute of General Medical Sciences[11]
Books
- Heterotrimeric G Proteins, Volume 237 (Methods in Enzymology). John N. Abelson, Melvin I. Simon, Ravi Iyengar, editors. Academic Press; 1st edition (June 28, 1994)
- Heterotrimeric G-Protein Effectors, Volume 238 (Methods in Enzymology). John N. Abelson, Melvin I. Simon, Ravi Iyengar, Editors. Academic Press; 1st Edition (September 1994)
- G Protein Pathways, Part A: Receptors, Volume 343 (Methods in Enzymology). Ravi Iyengar, John D. Hildebrandt, Editors. Academic Press; 1st Edition (October 2001)
- G Protein Pathways, Part B: G Proteins and Their Regulators, Volume 344 (Methods in Enzymology). Ravi Iyengar, John D. Hildebrandt, Editors. Academic Press; 1st Edition (December 2001)
- G Protein Pathways, Part C: Effector Mechanisms, Volume 345 (Methods in Enzymology). Ravi Ravi Iyengar, John D. Hildebrandt, Editors. Academic Press; 1st Edition (October 2001)
Publications
Partial list:
- 10615050. 2000. Ram. P. T.. Stat3-mediated transformation of NIH-3T3 cells by the constitutively active Q205L Galphao protein. Science. 287. 5450. 142–4. Horvath. C. M.. Iyengar. R. 10.1126/science.287.5450.142. 2000Sci...287..142R.
- 11057893. 3619409. 2000. Jordan. J. D.. Signaling networks: The origins of cellular multitasking. Cell. 103. 2. 193–200. Landau. E. M.. Iyengar. R. 10.1016/s0092-8674(00)00112-4 .
- 12169734. 2002. Bhalla. U. S.. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science. 297. 5583. 1018–23. Ram. P. T.. Iyengar. R. 10.1126/science.1068873. 2002Sci...297.1018B. 9516873.
- 15657046. 2005. Jordan. J. D.. Cannabinoid receptor-induced neurite outgrowth is mediated by Rap1 activation through G(alpha)o/i-triggered proteasomal degradation of Rap1GAPII. Journal of Biological Chemistry. 280. 12. 11413–21. He. J. C.. Eungdamrong. N. J.. Gomes. I. Ali. W. Nguyen. T. Bivona. T. G.. Philips. M. R.. Devi. L. A.. Iyengar. R. 10.1074/jbc.M411521200. free.
- 15869393. 3035045. 2005. Ma'Ayan. A. Toward predictive models of mammalian cells. Annual Review of Biophysics and Biomolecular Structure. 34. 319–49. Blitzer. R. D.. Iyengar. R. 10.1146/annurev.biophys.34.040204.144415.
- 16099987. 3032439. 2005. Ma'Ayan. A. Formation of regulatory patterns during signal propagation in a Mammalian cellular network. Science. 309. 5737. 1078–83. Jenkins. S. L.. Neves. S. Hasseldine. A. Grace. E. Dubin-Thaler. B. Eungdamrong. N. J.. Weng. G. Ram. P. T.. Rice. J. J.. Kershenbaum. A. Stolovitzky. G. A.. Blitzer. R. D.. Iyengar. R. 10.1126/science.1108876. 2005Sci...309.1078M.
- 2474532. 1989. Moriarty. T. M.. Coupling of exogenous receptors to phospholipase C in Xenopus oocytes through pertussis toxin-sensitive and -insensitive pathways. Cross-talk through heterotrimeric G-proteins. The Journal of Biological Chemistry. 264. 23. 13524–30. Sealfon. S. C.. Carty. D. J.. Roberts. J. L.. Iyengar. R. Landau. E. M.. 10.1016/S0021-9258(18)80028-X. free.
- 17098795. 1779960. 2007. Eungdamrong. N. J.. Compartment-specific feedback loop and regulated trafficking can result in sustained activation of Ras at the Golgi. Biophysical Journal. 92. 3. 808–15. Iyengar. R. 10.1529/biophysj.106.093104. 2007BpJ....92..808E.
- 17671451. 2735470. 2007. Zaidel-Bar. R. Functional atlas of the integrin adhesome. Nature Cell Biology. 9. 8. 858–67. Itzkovitz. S. Ma'Ayan. A. Iyengar. R. Geiger. B. 10.1038/ncb0807-858.
- 18178648. 2267139. 2008. Lipshtat. A. Functions of bifans in context of multiple regulatory motifs in signaling networks. Biophysical Journal. 94. 7. 2566–79. Purushothaman. S. P.. Iyengar. R. Ma'Ayan. A. 10.1529/biophysj.107.116673. 0711.4937. 2008BpJ....94.2566L.
- 18487186. 2776723. 2008. Bromberg. K. D.. Design logic of a cannabinoid receptor signaling network that triggers neurite outgrowth. Science. 320. 5878. 903–9. Ma'Ayan. A. Neves. S. R.. Iyengar. R. 10.1126/science.1152662. 2008Sci...320..903B.
- 18485874. 2728678. 2008. Neves. S. R.. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell. 133. 4. 666–80. Tsokas. P. Sarkar. A. Grace. E. A.. Rangamani. P. Taubenfeld. S. M.. Alberini. C. M.. Schaff. J. C.. Blitzer. R. D.. Moraru. I. I.. Iyengar. R. 10.1016/j.cell.2008.04.025.
- 9888852. 1999. Bhalla. U. S.. Emergent properties of networks of biological signaling pathways. Science. 283. 5400. 381–7. Iyengar. R. 10.1126/science.283.5400.381. 1999Sci...283..381B.
- 10102825. 3773983. 1999. Weng. G. Complexity in biological signaling systems. Science. 284. 5411. 92–6. Bhalla. U. S.. Iyengar. R. 10.1126/science.284.5411.92. 1999Sci...284...92W.
- 10419452. 1999. Jordan. J. D.. Modulation of rap activity by direct interaction of Galpha(o) with Rap1 GTPase-activating protein. The Journal of Biological Chemistry. 274. 31. 21507–10. Carey. K. D.. Stork. P. J.. Iyengar. R. 10.1074/jbc.274.31.21507. free.
- 10615050. 2000. Ram. P. T.. Stat3-mediated transformation of NIH-3T3 cells by the constitutively active Q205L Galphao protein. Science. 287. 5450. 142–4. Horvath. C. M.. Iyengar. R. 10.1126/science.287.5450.142. 2000Sci...287..142R.
- 20080566. 2824311. 2010. Lipshtat. A. Design of versatile biochemical switches that respond to amplitude, duration, and spatial cues. Proceedings of the National Academy of Sciences. 107. 3. 1247–52. Jayaraman. G. He. J. C.. Iyengar. R. 10.1073/pnas.0908647107. 2010PNAS..107.1247L. free.
- 20803507. 3057924. 2011. Berger. S. I.. Role of systems pharmacology in understanding drug adverse events. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 3. 2. 129–35. Iyengar. R. 10.1002/wsbm.114.
- 21320428 . 3037558 . 2011 . Rangamani . P . Signaling network triggers and membrane physical properties control the actin cytoskeleton-driven isotropic phase of cell spreading . Biophysical Journal . 100 . 4 . 845–57 . Fardin . M. A. . Xiong . Y . Lipshtat . A . Rossier . O . Sheetz . M. P. . Iyengar . R . 10.1016/j.bpj.2010.12.3732 . 2011BpJ...100..845R .
- 20483321. 2872297. 2010. Xiong. Y. Mechanisms controlling cell size and shape during isotropic cell spreading. Biophysical Journal. 98. 10. 2136–46. Rangamani. P. Fardin. M. A.. Lipshtat. A. Dubin-Thaler. B. Rossier. O. Sheetz. M. P.. Iyengar. R. 10.1016/j.bpj.2010.01.059. 2010BpJ....98.2136X.
- 20407125. 3068558. 2010. Berger. S. I.. Systems pharmacology of arrhythmias. Science Signaling. 3. 118. ra30. Ma'Ayan. A. Iyengar. R. 10.1126/scisignal.2000723.
- 19861414. 2801262. 2010. Zorina. Y. Cannabinoid 1 receptor and interleukin-6 receptor together induce integration of protein kinase and transcription factor signaling to trigger neurite outgrowth. Journal of Biological Chemistry. 285. 2. 1358–70. Iyengar. R. Bromberg. K. D.. 10.1074/jbc.M109.049841. free.
- 20080566 . 2824311 . 2010 . Lipshtat . A . Design of versatile biochemical switches that respond to amplitude, duration, and spatial cues . Proceedings of the National Academy of Sciences . 107 . 3 . 1247–52 . Jayaraman . G . He . J. C. . Iyengar . R . 10.1073/pnas.0908647107 . 2010PNAS..107.1247L . free .
- 19648136 . 2752618 . 2009 . Berger . S. I. . Network analyses in systems pharmacology . Bioinformatics . 25 . 19 . 2466–72 . Iyengar . R . 10.1093/bioinformatics/btp465 .
- 18940805. 2645809. 2009. Neves. S. R.. Models of spatially restricted biochemical reaction systems. Journal of Biological Chemistry. 284. 9. 5445–9. Iyengar. R. 10.1074/jbc.R800058200. free.
- 19033453 . 2614745 . 2008 . Ma'Ayan . A . Ordered cyclic motifs contribute to dynamic stability in biological and engineered networks . Proceedings of the National Academy of Sciences . 105 . 49 . 19235–40 . Cecchi . G. A. . Wagner . J . Rao . A. R. . Iyengar . R . Stolovitzky . G . 10.1073/pnas.0805344105 . 2008PNAS..10519235M . free .
- 18487186 . 2776723 . 2008 . Bromberg . K. D. . Design logic of a cannabinoid receptor signaling network that triggers neurite outgrowth . Science . 320 . 5878 . 903–9 . Ma'Ayan . A . Neves . S. R. . Iyengar . R . 10.1126/science.1152662 . 2008Sci...320..903B .
- 18485874. 2728678. 2008. Neves. S. R.. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell. 133. 4. 666–80. Tsokas. P. Sarkar. A. Grace. E. A.. Rangamani. P. Taubenfeld. S. M.. Alberini. C. M.. Schaff. J. C.. Blitzer. R. D.. Moraru. I. I.. Iyengar. R. 10.1016/j.cell.2008.04.025.
- 18178648 . 2267139 . 2008 . Lipshtat . A . Functions of bifans in context of multiple regulatory motifs in signaling networks . Biophysical Journal . 94 . 7 . 2566–79 . Purushothaman . S. P. . Iyengar . R . Ma'Ayan . A . 10.1529/biophysj.107.116673 . 0711.4937 . 2008BpJ....94.2566L .
- 17671451 . 2735470 . 2007 . Zaidel-Bar . R . Functional atlas of the integrin adhesome . Nature Cell Biology . 9 . 8 . 858–67 . Itzkovitz . S . Ma'Ayan . A . Iyengar . R . Geiger . B . 10.1038/ncb0807-858 .
- 17516560. 2561141. 2007. Ma'Ayan. A. Network analysis of FDA approved drugs and their targets. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine. 74. 1. 27–32. Jenkins. S. L.. Goldfarb. J. Iyengar. R. 10.1002/msj.20002.
- 17098795 . 1779960 . 2007 . Eungdamrong . N. J. . Compartment-specific feedback loop and regulated trafficking can result in sustained activation of Ras at the Golgi . Biophysical Journal . 92 . 3 . 808–15 . Iyengar . R . 10.1529/biophysj.106.093104 . 2007BpJ....92..808E .
- 16906869. 3032447. 2006. Ma'Ayan. A. Topology of resultant networks shaped by evolutionary pressure. Physical Review E. 73. 6 Pt 1. 061912. Lipshtat. A. Iyengar. R. 10.1103/PhysRevE.73.061912. 2006PhRvE..73f1912M.
- 16099987. 3032439. 2005. Ma'Ayan. A. Formation of regulatory patterns during signal propagation in a Mammalian cellular network. Science. 309. 5737. 1078–83. Jenkins. S. L.. Neves. S. Hasseldine. A. Grace. E. Dubin-Thaler. B. Eungdamrong. N. J.. Weng. G. Ram. P. T.. Rice. J. J.. Kershenbaum. A. Stolovitzky. G. A.. Blitzer. R. D.. Iyengar. R. 10.1126/science.1108876. 2005Sci...309.1078M.
- 15869393. 3035045. 2005. Ma'Ayan. A. Toward predictive models of mammalian cells. Annual Review of Biophysics and Biomolecular Structure. 34. 319–49. Blitzer. R. D.. Iyengar. R. 10.1146/annurev.biophys.34.040204.144415.
- 15657046. 2005. Jordan. J. D.. Cannabinoid receptor-induced neurite outgrowth is mediated by Rap1 activation through G(alpha)o/i-triggered proteasomal degradation of Rap1GAPII. Journal of Biological Chemistry. 280. 12. 11413–21. He. J. C.. Eungdamrong. N. J.. Gomes. I. Ali. W. Nguyen. T. Bivona. T. G.. Philips. M. R.. Devi. L. A.. Iyengar. R. 10.1074/jbc.M411521200. free.
- 12040175. 2002. Neves. S. R.. G protein pathways. Science. 296. 5573. 1636–9. Ram. P. T.. Iyengar. R. 10.1126/science.1071550. 2002Sci...296.1636N. 20136388.
External links
Notes and References
- Web site: Mount Sinai School of Medicine - Faculty profile . 2010-03-31.
- Web site: Systems Biology Center New York . 2010-03-31.
- Web site: The Experimental Therapeutics Institute . 2010-03-31 . dead . https://web.archive.org/web/20090330222017/http://www.mssm.edu/eti/iyengar.htm . March 30, 2009 .
- Web site: Integrating and Leveraging the Physical Sciences to Open a New Frontier in Oncology . 2010-03-31. The National Cancer Institute Office of Technology and Industrial Relations
- Web site: Q&A: Ravi Iyengar on Molecular Systems . Emily Carlson . March 30, 2009 . Computing Life . National Institute of General Medical Sciences . 2010-03-31.
- Web site: American Association for the Advancement of Science . September 26, 2015.
- Web site: Ravi Iyengar - Patents . 2010-03-31. patentdocs
- Web site: Structure and Function of Signal Transducing Components: National Institutes of Health . September 26, 2015.
- Web site: Systems Biology Center in New York: National Institutes of Health . September 26, 2015.
- Web site: Functions of Regulatory Motifs in Signaling Networks: National Institutes of Health . September 26, 2015.
- Web site: Modeling Cell Regulatory Networks: National Institutes of Health . September 26, 2015.