In mathematics, Rathjen's
\psi
M
M
M
M
<M
It admits an associated ordinal notation
T(M)
\psi\Omega(\chi
\varepsilonM+1 |
(0))
\vertKPM\vert
\psi
\vertKPM\vert
KPM
\Delta0
H(x,y)
\forallx\existsy(H(x,y))
z
\forallx\inz\existsy(H(x,y))
\psi\Omega(\psi
|
(0))
\psi
Restrict
\pi
\kappa
<M
f
\operatorname{dom}(f)
f
\operatorname{cl}M(X)
X\cup\{\alpha<M:\alphaisalimitpointofX\}
\operatorname{enum}(X)
X
\alpha
\varphi\alpha(0)=\alpha
For
\alpha\in\GammaM+1
\beta\inM
\begin{align} &\beta\cup\{0,M\}\subseteqBn(\alpha,\beta)\gamma=\gamma1+ … +\gammakand\gamma1,\ldots,\gammak\inBn(\alpha,\beta)\\[5pt] & → \gamma\inBn+1(\alpha,\beta)\gamma=
\varphi | |
\gamma0 |
(\gamma1)and\gamma0,\gamma1\inBn(\alpha,\beta) → \gamma\inBn+1(\alpha,\beta)\pi\inBn(\alpha,\beta)\\[5pt] &and\gamma<\pi → \gamma\inBn+1(\alpha,\beta)\delta,η\inBn(\alpha,\beta)\land\delta<\alpha\landη\in\operatorname{dom}(\chi\delta)\\[5pt] & → \chi\delta(η)\inBn+1(\alpha,\beta)B(\alpha,\beta)\\[5pt] &cupnBn(\alpha,\beta)\chi\alpha\\[5pt] &=\operatorname{enum}(\operatorname{cl}(\kappa:\kappa\notinB(\alpha,\kappa)\land\alpha\inB(\alpha,\kappa)\})). \end{align}
If
\kappa=\chi\alpha(\beta+1)
(\alpha,\beta)\in\GammaM+1 x M
\kappa-:=\chi\alpha(\beta)
(\alpha,\beta)
\kappa=\chi\alpha(0)
\alpha\in\GammaM+1
\kappa-:=\sup(\operatorname{SC}M(\alpha)\cup\{0\})
\alpha
\operatorname{SC}M(\alpha)
<M
For
\alpha\in\GammaM+1
\begin{align} &\kappa-\cup\{\kappa-,M\}\subset
n(\alpha)\gamma | |
C | |
\kappa |
=\gamma1+ … +\gammakand\gamma1,\ldots,\gammak\inCn(\alpha) → \gamma\inCn+1(\alpha)\gamma=
\varphi | |
\gamma0 |
(\gamma1)\land\gamma0,\gamma1\inCn(\alpha,\beta)\\[5pt] & → \gamma\inCn+1(\alpha)\pi\in
n | |
C | |
\kappa(\alpha) |
\cap\kappa\land\gamma<\pi\land\pi\inrm{R}\\[5pt] & → \gamma\in
n+1 | |
C | |
\kappa(\alpha)\gamma |
=\chi\delta(η)\land\delta,η\in
n | |
C | |
\kappa(\alpha) |
→ \gamma\in
n+1 | |
C | |
\kappa(\alpha) |
\\[5pt] &\gamma=\Phi\delta(η)\land\delta,η\in
n | |
C | |
\kappa(\alpha) |
\land0<\delta\land\delta,η<M → \gamma\in
n+1 | |
C | |
\kappa(\alpha)\beta |
<\alpha\land\pi,\beta\in
n | |
C | |
\kappa(\alpha) |
\land\beta\inC\pi(\beta) → \psi\pi(\beta)\in
n+1 | |
C | |
\kappa(\alpha)C |
\kappa(\alpha):=
cup | ||||||||||
|
. \end{align}
\psi\kappa(\alpha):=min(\{\xi:\xi\notinC\kappa(\alpha)\}).
\pi
\operatorname{enum}(X)
\operatorname{enum}(X)
X
\operatorname{cl}(X)
X
X\cup\{\beta\in\operatorname{Lim}\mid\sup(X\cap\beta)=\beta\}
\operatorname{Lim}
B0(\alpha,\beta)=\beta\cup\{0,M\}
Bn+1(\alpha,\beta)=\{\gamma+\delta,\varphi\gamma(\delta),\chi\mu(\delta)|\gamma,\delta,\mu\inBn(\alpha,\beta)\land\mu<\alpha\}
B(\alpha,\beta)=cupnBn(\alpha,\beta)
\chi\alpha(\beta)=\operatorname{enum}(\operatorname{cl}(\{\pi:B(\alpha,\pi)\capM\subseteq\pi\land\alpha\inB(\alpha,\pi)\}))=\operatorname{enum}(\{\beta\in\operatorname{Lim}\mid\sup\{\pi:B(\alpha,\pi)\capM\subseteq\pi\land\alpha\inB(\alpha,\pi)\}\cap\beta)=\beta\}
C0(\alpha,\beta)=\beta\cup\{0,M\}
Cn+1(\alpha,\beta)=\{\gamma+\delta,\varphi\gamma(\delta),\chi\mu(\delta),\psi\pi(\mu)|\gamma,\delta,\mu,\pi\inBn(\alpha,\beta)\land\mu<\alpha\}
C(\alpha,\beta)=cupnCn(\alpha,\beta)
\psi\pi(\alpha)=min(\{\beta:C(\alpha,\beta)\cap\pi\subseteq\beta\land\alpha\inC(\alpha,\beta)\})
Rathjen originally defined the
\psi
\chi
\chi
Rathjen's
\psi
\psi
\psi