Ramanujan theta function explained

In mathematics, particularly -analog theory, the Ramanujan theta function generalizes the form of the Jacobi theta functions, while capturing their general properties. In particular, the Jacobi triple product takes on a particularly elegant form when written in terms of the Ramanujan theta. The function is named after mathematician Srinivasa Ramanujan.

Definition

The Ramanujan theta function is defined as

f(a,b)=

infty a
\sum
n=-infty
n(n+1)
2

n(n-1)
2
b

for . The Jacobi triple product identity then takes the form

f(a,b)=(-a;ab)infty(-b;ab)infty(ab;ab)infty.

Here, the expression

(a;q)n

denotes the -Pochhammer symbol. Identities that follow from this include

\varphi(q)=f(q,q)=

infty
\sum
n=-infty
n2
q

=

2
{\left(-q;q
infty

\left(q2;q

2\right)
infty}

and

\psi(q)=f\left(q,q3\right)=

infty
\sum
n=0
n(n+1)
2
q

={\left(q2;q

2\right)
infty}{(-q;

q)infty}

and

f(-q)=f\left(-q,-q2\right)=

infty
\sum
n=-infty

(-1)n

n(3n-1)
2
q

=(q;q)infty

This last being the Euler function, which is closely related to the Dedekind eta function. The Jacobi theta function may be written in terms of the Ramanujan theta function as:

\vartheta(w,q)=f\left(qw2,qw-2\right)

Integral representations

We have the following integral representation for the full two-parameter form of Ramanujan's theta function:[1]

f(a,b)=1+

infty
\int
0
2a
-122
t
e
\sqrt{2\pi
}\left[\frac{1 - a \sqrt{ab} \cosh\left(\sqrt{\log ab} \,t\right)}{ a^3 b - 2a \sqrt{ab} \cosh\left(\sqrt{\log ab} \,t\right) + 1} \right] dt + \int_0^ \frac\left[\frac{1 - b \sqrt{ab} \cosh\left(\sqrt{\log ab} \,t\right)}{ a b^3 - 2b \sqrt{ab} \cosh\left(\sqrt{\log ab} \,t\right) + 1} \right] dt

The special cases of Ramanujan's theta functions given by and [2] also have the following integral representations:

\begin{align}\varphi(q)&=1+

infty
\int
0
-122
t
e
\sqrt{2\pi
} \left[\frac{4q \left(1-q^2 \cosh\left(\sqrt{2 \log q} \,t\right)\right)}{q^4-2 q^2 \cosh\left(\sqrt{2 \log q} \,t\right) + 1} \right] dt \\[6pt] \psi(q) & = \int_0^ \frac \left[\frac{1-\sqrt{q} \cosh\left(\sqrt{\log q} \,t\right)}{q-2 \sqrt{q} \cosh\left(\sqrt{\log q} \,t\right) + 1} \right] dt\end

This leads to several special case integrals for constants defined by these functions when (cf. theta function explicit values). In particular, we have that

\begin{align}\varphi\left(e-k\pi\right)&=1+

infty
\int
0
-122
t
e
\sqrt{2\pi
} \left[\frac{4 e^{k\pi} \left(e^{2k\pi} - \cos\left(\sqrt{2\pi k} \,t\right) \right)}{e^{4k\pi} - 2 e^{2k\pi} \cos\left(\sqrt{2\pi k} \,t\right) + 1} \right] dt \\[6pt] \frac & = 1 + \int_0^\infty \frac \left[\frac{4 e^\pi \left(e^{2\pi} - \cos\left(\sqrt{2\pi} \,t\right) \right)}{e^{4\pi} - 2 e^{2\pi} \cos\left(\sqrt{2\pi} \,t\right) + 1} \right] dt \\[6pt] \frac \cdot \frac & = 1 + \int_0^\infty \frac \left[\frac{4 e^{2\pi} \left(e^{4\pi} - \cos\left(2 \sqrt{\pi} \,t\right) \right)}{e^{8\pi} - 2 e^{4\pi} \cos\left(2 \sqrt{\pi} \,t\right) + 1} \right] dt \\[6pt] \frac \cdot \frac & = 1 + \int_0^\infty \frac \left[\frac{4 e^{3\pi} \left(e^{6\pi} - \cos\left(\sqrt{6 \pi} \,t\right) \right)}{e^{12\pi} - 2 e^{6\pi} \cos\left(\sqrt{6 \pi} \,t\right) + 1} \right] dt \\[6pt] \frac \cdot \frac & = 1 + \int_0^\infty \frac \left[\frac{4 e^{5\pi} \left(e^{10\pi} - \cos\left(\sqrt{10 \pi} \,t\right) \right)}{e^{20\pi} - 2 e^{10\pi} \cos\left(\sqrt{10 \pi} \,t\right) + 1} \right] dt\end

and that

\begin{align}\psi\left(e-k\pi\right)&=

infty
\int
0
-122
t
e
\sqrt{2\pi
} \left[\frac{\cos\left(\sqrt{k \pi} \,t\right) - e^\frac{k\pi}{2}}{ \cos\left(\sqrt{k \pi} \,t\right) - \cosh\frac{k\pi}{2}} \right] dt \\[6pt] \frac \cdot \frac & = \int_0^\infty \frac \left[\frac{\cos\left(\sqrt{\pi} \,t\right) - e^\frac{\pi}{2}}{ \cos\left(\sqrt{\pi} \,t\right) - \cosh\frac{\pi}{2}} \right] dt \\[6pt] \frac \cdot \frac & = \int_0^\infty \frac \left[\frac{\cos\left(\sqrt{2 \pi} \,t\right) - e^\pi}{ \cos\left(\sqrt{2 \pi} \,t\right) - \cosh \pi} \right] dt \\[6pt] \frac \cdot \frac & = \int_0^\infty \frac \left[\frac{\cos\left(\sqrt{\frac{\pi}{2}} \,t\right) - e^\frac{\pi}{4}}{ \cos\left(\sqrt{\frac{\pi}{2}} \,t\right) - \cosh\frac{\pi}{4}} \right] dt\end

Application in string theory

The Ramanujan theta function is used to determine the critical dimensions in bosonic string theory, superstring theory and M-theory.

References

Notes and References

  1. Schmidt. M. D.. Square series generating function transformations. Journal of Inequalities and Special Functions. 2017. 8. 2. 1609.02803.
  2. Web site: Weisstein. Eric W.. Ramanujan Theta Functions. MathWorld. 29 April 2018.