Ramanujan theta function explained
In mathematics, particularly -analog theory, the Ramanujan theta function generalizes the form of the Jacobi theta functions, while capturing their general properties. In particular, the Jacobi triple product takes on a particularly elegant form when written in terms of the Ramanujan theta. The function is named after mathematician Srinivasa Ramanujan.
Definition
The Ramanujan theta function is defined as
for . The Jacobi triple product identity then takes the form
f(a,b)=(-a;ab)infty (-b;ab)infty (ab;ab)infty.
Here, the expression
denotes the
-Pochhammer symbol. Identities that follow from this include
\varphi(q)=f(q,q)=
=
\left(q2;q
and
\psi(q)=f\left(q,q3\right)=
={\left(q2;q
q)infty}
and
f(-q)=f\left(-q,-q2\right)=
(-1)n
=(q;q)infty
This last being the Euler function, which is closely related to the Dedekind eta function. The Jacobi theta function may be written in terms of the Ramanujan theta function as:
\vartheta(w,q)=f\left(qw2,qw-2\right)
Integral representations
We have the following integral representation for the full two-parameter form of Ramanujan's theta function:[1]
}\left[\frac{1 - a \sqrt{ab} \cosh\left(\sqrt{\log ab} \,t\right)}{
a^3 b - 2a \sqrt{ab} \cosh\left(\sqrt{\log ab} \,t\right) + 1}
\right] dt + \int_0^ \frac\left[\frac{1 - b \sqrt{ab} \cosh\left(\sqrt{\log ab} \,t\right)}{
a b^3 - 2b \sqrt{ab} \cosh\left(\sqrt{\log ab} \,t\right) + 1}
\right] dt
The special cases of Ramanujan's theta functions given by and [2] also have the following integral representations:
\begin{align}\varphi(q)&=1+
} \left[\frac{4q \left(1-q^2 \cosh\left(\sqrt{2 \log q} \,t\right)\right)}{q^4-2 q^2
\cosh\left(\sqrt{2 \log q} \,t\right) + 1}
\right] dt \\[6pt] \psi(q) & = \int_0^ \frac \left[\frac{1-\sqrt{q}
\cosh\left(\sqrt{\log q} \,t\right)}{q-2 \sqrt{q}
\cosh\left(\sqrt{\log q} \,t\right) + 1}
\right] dt\end
This leads to several special case integrals for constants defined by these functions when (cf. theta function explicit values). In particular, we have that
\begin{align}\varphi\left(e-k\pi\right)&=1+
} \left[\frac{4 e^{k\pi} \left(e^{2k\pi} - \cos\left(\sqrt{2\pi k} \,t\right)
\right)}{e^{4k\pi} - 2 e^{2k\pi} \cos\left(\sqrt{2\pi k} \,t\right) + 1}
\right] dt \\[6pt] \frac & = 1 + \int_0^\infty \frac \left[\frac{4 e^\pi \left(e^{2\pi} - \cos\left(\sqrt{2\pi} \,t\right)
\right)}{e^{4\pi} - 2 e^{2\pi} \cos\left(\sqrt{2\pi} \,t\right) + 1}
\right] dt \\[6pt] \frac \cdot \frac & = 1 + \int_0^\infty \frac \left[\frac{4 e^{2\pi} \left(e^{4\pi} - \cos\left(2 \sqrt{\pi} \,t\right)
\right)}{e^{8\pi} - 2 e^{4\pi} \cos\left(2 \sqrt{\pi} \,t\right) + 1}
\right] dt \\[6pt] \frac \cdot \frac & = 1 + \int_0^\infty \frac \left[\frac{4 e^{3\pi} \left(e^{6\pi} - \cos\left(\sqrt{6 \pi} \,t\right)
\right)}{e^{12\pi} - 2 e^{6\pi} \cos\left(\sqrt{6 \pi} \,t\right) + 1}
\right] dt \\[6pt] \frac \cdot \frac & = 1 + \int_0^\infty \frac \left[\frac{4 e^{5\pi} \left(e^{10\pi} - \cos\left(\sqrt{10 \pi} \,t\right)
\right)}{e^{20\pi} - 2 e^{10\pi} \cos\left(\sqrt{10 \pi} \,t\right) + 1}
\right] dt\end
and that
\begin{align}\psi\left(e-k\pi\right)&=
} \left[\frac{\cos\left(\sqrt{k \pi} \,t\right) - e^\frac{k\pi}{2}}{
\cos\left(\sqrt{k \pi} \,t\right) - \cosh\frac{k\pi}{2}}
\right] dt \\[6pt] \frac \cdot \frac & = \int_0^\infty \frac \left[\frac{\cos\left(\sqrt{\pi} \,t\right) - e^\frac{\pi}{2}}{
\cos\left(\sqrt{\pi} \,t\right) - \cosh\frac{\pi}{2}}
\right] dt \\[6pt] \frac \cdot \frac & = \int_0^\infty \frac \left[\frac{\cos\left(\sqrt{2 \pi} \,t\right) - e^\pi}{
\cos\left(\sqrt{2 \pi} \,t\right) - \cosh \pi}
\right] dt \\[6pt] \frac \cdot \frac & = \int_0^\infty \frac \left[\frac{\cos\left(\sqrt{\frac{\pi}{2}} \,t\right) - e^\frac{\pi}{4}}{
\cos\left(\sqrt{\frac{\pi}{2}} \,t\right) - \cosh\frac{\pi}{4}}
\right] dt\end
Application in string theory
The Ramanujan theta function is used to determine the critical dimensions in bosonic string theory, superstring theory and M-theory.
References
- Book: Bailey, W. N. . Generalized Hypergeometric Series . 1935 . Cambridge Tracts in Mathematics and Mathematical Physics . 32 . Cambridge University Press . Cambridge .
- Book: George . Gasper . Mizan . Rahman . Basic Hypergeometric Series . 2nd . 2004 . Encyclopedia of Mathematics and Its Applications . 96 . Cambridge University Press . Cambridge . 0-521-83357-4 .
- Book: Kaku, Michio . 1994 . Hyperspace: A Scientific Odyssey Through Parallel Universes, Time Warps, and the Tenth Dimension . Oxford . Oxford University Press . 0-19-286189-1 .
Notes and References
- Schmidt. M. D.. Square series generating function transformations. Journal of Inequalities and Special Functions. 2017. 8. 2. 1609.02803.
- Web site: Weisstein. Eric W.. Ramanujan Theta Functions. MathWorld. 29 April 2018.