Ramanujan's sum should not be confused with Ramanujan summation.
In number theory, Ramanujan's sum, usually denoted cq(n), is a function of two positive integer variables q and n defined by the formula
cq(n)=\sum1e2{q}n},
where (a, q) = 1 means that a only takes on values coprime to q.
Srinivasa Ramanujan mentioned the sums in a 1918 paper.[1] In addition to the expansions discussed in this article, Ramanujan's sums are used in the proof of Vinogradov's theorem that every sufficiently large odd number is the sum of three primes.[2]
For integers a and b,
a\midb
b | |
a |
=c.
a\nmidb
\sumd\midmf(d)
means that d goes through all the positive divisors of m, e.g.
\sumd\mid12f(d)=f(1)+f(2)+f(3)+f(4)+f(6)+f(12).
(a,b)
\phi(n)
\mu(n)
\zeta(s)
eix=\cosx+i\sinx,
\begin{align} c1(n)&=1\\ c2(n)&=\cosn\pi\\ c3(n)&=2\cos\tfrac23n\pi\\ c4(n)&=2\cos\tfrac12n\pi\\ c5(n)&=2\cos\tfrac25n\pi+2\cos\tfrac45n\pi\\ c6(n)&=2\cos\tfrac13n\pi\\ c7(n)&=2\cos\tfrac27n\pi+2\cos\tfrac47n\pi+2\cos\tfrac67n\pi\\ c8(n)&=2\cos\tfrac14n\pi+2\cos\tfrac34n\pi\\ c9(n)&=2\cos\tfrac29n\pi+2\cos\tfrac49n\pi+2\cos\tfrac89n\pi\\ c10(n)&=2\cos\tfrac15n\pi+2\cos\tfrac35n\pi\\ \end{align}
and so on (..,,...). cq(n) is always an integer.
Let
| ||||
\zeta | ||||
q=e |
.
\zetaq,
2, | |
\zeta | |
q |
\ldots,
q-1 | |
\zeta | |
q |
,
q | |
\zeta | |
q |
=
0 | |
\zeta | |
q |
=1
is also a root. Therefore, since there are q of them, they are all of the roots. The numbers
n | |
\zeta | |
q |
n | |
\zeta | |
q |
=1
a | |
\zeta | |
q |
Thus, the Ramanujan sum cq(n) is the sum of the n-th powers of the primitive q-th roots of unity.
It is a fact[3] that the powers of are precisely the primitive roots for all the divisors of q.
Example. Let q = 12. Then
\zeta12,
5, | |
\zeta | |
12 |
7, | |
\zeta | |
12 |
11 | |
\zeta | |
12 |
2 | |
\zeta | |
12 |
10 | |
\zeta | |
12 |
3 | |
\zeta | |
12 |
=i
9 | |
\zeta | |
12 |
=-i
4 | |
\zeta | |
12 |
8 | |
\zeta | |
12 |
6 | |
\zeta | |
12 |
=-1
12 | |
\zeta | |
12 |
=1
Therefore, if
ηq(n)=
q | |
\sum | |
k=1 |
kn | |
\zeta | |
q |
is the sum of the n-th powers of all the roots, primitive and imprimitive,
ηq(n)=\sumd\midcd(n),
and by Möbius inversion,
cq(n)=\sumd\mid\mu\left(
q | |
d\right)η |
d(n).
It follows from the identity xq − 1 = (x − 1)(xq−1 + xq−2 + ... + x + 1) that
ηq(n)=\begin{cases}0&q\nmidn\ q&q\midn\ \end{cases}
and this leads to the formula
cq(n)=\sumd\mid\mu\left(
q | |
d |
\right)d,
published by Kluyver in 1906.[4]
This shows that cq(n) is always an integer. Compare it with the formula
\phi(q)=\sumd\mu\left(
q | |
d |
\right)d.
It is easily shown from the definition that cq(n) is multiplicative when considered as a function of q for a fixed value of n:[5] i.e.
If (q,r)=1 then cq(n)cr(n)=cqr(n).
From the definition (or Kluyver's formula) it is straightforward to prove that, if p is a prime number,
cp(n)=\begin{cases} -1&ifp\nmidn\\ \phi(p)&ifp\midn\\ \end{cases} ,
and if pk is a prime power where k > 1,
c | |
pk |
(n)=\begin{cases} 0&ifpk-1\nmidn\\ -pk-1&ifpk-1\midnandpk\nmidn\\ \phi(pk)&ifpk\midn\\ \end{cases} .
This result and the multiplicative property can be used to prove
cq(n)=\mu\left(
q | \right) | |
(q,n) |
\phi(q) | ||||
|
.
This is called von Sterneck's arithmetic function.[6] The equivalence of it and Ramanujan's sum is due to Hölder.[7] [8]
For all positive integers q,
\begin{align} c1(q)&=1\\ cq(1)&=\mu(q)\\ cq(q)&=\phi(q)\\ cq(m)&=cq(n)&&form\equivn\pmodq\\ \end{align}
For a fixed value of q the absolute value of the sequence
\{cq(1),cq(2),\ldots\}
\{c1(n),c2(n),\ldots\}
If q > 1
a+q-1 | |
\sum | |
n=a |
cq(n)=0.
Let m1, m2 > 0, m = lcm(m1, m2). Then[9] Ramanujan's sums satisfy an orthogonality property:
1 | |
m |
m | |
\sum | |
k=1 |
c | |
m1 |
(k)
c | |
m2 |
(k)=\begin{cases}\phi(m)&m1=m2=m,\ 0&otherwise\end{cases}
Let n, k > 0. Then[10]
\sum\stackrel{d\midn}{\gcd(d,k)=1}d
\mu(\tfrac{n | |
d |
)}{\phi(d)}=
\mu(n)cn(k) | |
\phi(n) |
,
known as the Brauer - Rademacher identity.
If n > 0 and a is any integer, we also have[11]
\sum\stackrel{1\lek\len}{\gcd(k,n)=1}cn(k-a)=\mu(n)cn(a),
due to Cohen.
n | |||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | ||
s | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | |
3 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | 2 | |
4 | 0 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | 0 | -2 | |
5 | -1 | -1 | -1 | -1 | 4 | -1 | -1 | -1 | -1 | 4 | -1 | -1 | -1 | -1 | 4 | -1 | -1 | -1 | -1 | 4 | -1 | -1 | -1 | -1 | 4 | -1 | -1 | -1 | -1 | 4 | |
6 | 1 | -1 | -2 | -1 | 1 | 2 | 1 | -1 | -2 | -1 | 1 | 2 | 1 | -1 | -2 | -1 | 1 | 2 | 1 | -1 | -2 | -1 | 1 | 2 | 1 | -1 | -2 | -1 | 1 | 2 | |
7 | -1 | -1 | -1 | -1 | -1 | -1 | 6 | -1 | -1 | -1 | -1 | -1 | -1 | 6 | -1 | -1 | -1 | -1 | -1 | -1 | 6 | -1 | -1 | -1 | -1 | -1 | -1 | 6 | -1 | -1 | |
8 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | |
9 | 0 | 0 | -3 | 0 | 0 | -3 | 0 | 0 | 6 | 0 | 0 | -3 | 0 | 0 | -3 | 0 | 0 | 6 | 0 | 0 | -3 | 0 | 0 | -3 | 0 | 0 | 6 | 0 | 0 | -3 | |
10 | 1 | -1 | 1 | -1 | -4 | -1 | 1 | -1 | 1 | 4 | 1 | -1 | 1 | -1 | -4 | -1 | 1 | -1 | 1 | 4 | 1 | -1 | 1 | -1 | -4 | -1 | 1 | -1 | 1 | 4 | |
11 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 10 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 10 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | |
12 | 0 | 2 | 0 | -2 | 0 | -4 | 0 | -2 | 0 | 2 | 0 | 4 | 0 | 2 | 0 | -2 | 0 | -4 | 0 | -2 | 0 | 2 | 0 | 4 | 0 | 2 | 0 | -2 | 0 | -4 | |
13 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 12 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 12 | -1 | -1 | -1 | -1 | |
14 | 1 | -1 | 1 | -1 | 1 | -1 | -6 | -1 | 1 | -1 | 1 | -1 | 1 | 6 | 1 | -1 | 1 | -1 | 1 | -1 | -6 | -1 | 1 | -1 | 1 | -1 | 1 | 6 | 1 | -1 | |
15 | 1 | 1 | -2 | 1 | -4 | -2 | 1 | 1 | -2 | -4 | 1 | -2 | 1 | 1 | 8 | 1 | 1 | -2 | 1 | -4 | -2 | 1 | 1 | -2 | -4 | 1 | -2 | 1 | 1 | 8 | |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -8 | 0 | 0 | 0 | 0 | 0 | 0 | |
17 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 16 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | |
18 | 0 | 0 | 3 | 0 | 0 | -3 | 0 | 0 | -6 | 0 | 0 | -3 | 0 | 0 | 3 | 0 | 0 | 6 | 0 | 0 | 3 | 0 | 0 | -3 | 0 | 0 | -6 | 0 | 0 | -3 | |
19 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 18 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | |
20 | 0 | 2 | 0 | -2 | 0 | 2 | 0 | -2 | 0 | -8 | 0 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | 0 | 8 | 0 | 2 | 0 | -2 | 0 | 2 | 0 | -2 | 0 | -8 | |
21 | 1 | 1 | -2 | 1 | 1 | -2 | -6 | 1 | -2 | 1 | 1 | -2 | 1 | -6 | -2 | 1 | 1 | -2 | 1 | 1 | 12 | 1 | 1 | -2 | 1 | 1 | -2 | -6 | 1 | -2 | |
22 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -10 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 10 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | |
23 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 22 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | |
24 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | -8 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 4 | 0 | 0 | |
25 | 0 | 0 | 0 | 0 | -5 | 0 | 0 | 0 | 0 | -5 | 0 | 0 | 0 | 0 | -5 | 0 | 0 | 0 | 0 | -5 | 0 | 0 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | -5 | |
26 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -12 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 12 | 1 | -1 | 1 | -1 | |
27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | |
28 | 0 | 2 | 0 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | 0 | -2 | 0 | -12 | 0 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | 0 | -2 | 0 | 2 | 0 | 12 | 0 | 2 | |
29 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 28 | -1 | |
30 | -1 | 1 | 2 | 1 | 4 | -2 | -1 | 1 | 2 | -4 | -1 | -2 | -1 | 1 | -8 | 1 | -1 | -2 | -1 | -4 | 2 | 1 | -1 | -2 | 4 | 1 | 2 | 1 | -1 | 8 |
If f(n) is an arithmetic function (i.e. a complex-valued function of the integers or natural numbers), then a convergent infinite series of the form:
infty | |
f(n)=\sum | |
q=1 |
aqcq(n)
or of the form:
infty | |
f(q)=\sum | |
n=1 |
ancq(n)
where the, is called a Ramanujan expansion[12] of f(n).
Ramanujan found expansions of some of the well-known functions of number theory. All of these results are proved in an "elementary" manner (i.e. only using formal manipulations of series and the simplest results about convergence).[13] [14] [15]
The expansion of the zero function depends on a result from the analytic theory of prime numbers, namely that the series
| ||||
\sum | ||||
n=1 |
converges to 0, and the results for r(n) and r′(n) depend on theorems in an earlier paper.[16]
All the formulas in this section are from Ramanujan's 1918 paper.
The generating functions of the Ramanujan sums are Dirichlet series:
\zeta(s)\sum\delta\midq\mu\left(
q | |
\delta |
\right)\delta1-s=
infty | |
\sum | |
n=1 |
cq(n) | |
ns |
is a generating function for the sequence cq(1), cq(2), ... where q is kept constant, and
\sigmar-1(n) | |
nr-1\zeta(r) |
=
infty | |
\sum | |
q=1 |
cq(n) | |
qr |
is a generating function for the sequence c1(n), c2(n), ... where n is kept constant.
There is also the double Dirichlet series
\zeta(s)\zeta(r+s-1) | |
\zeta(r) |
=
infty | |
\sum | |
q=1 |
infty | |
\sum | |
n=1 |
cq(n) | |
qrns |
.
q | |
\sum | |
n=1 |
cq(n)xn-1=(xq-1)
\Phiq'(x) | |
\Phiq(x) |
=\Phiq'(x)\prod\begin{array{c}d\midq\\[-4pt]d ≠ q\end{array}}\Phid(x)
σk(n) is the divisor function (i.e. the sum of the k-th powers of the divisors of n, including 1 and n). σ0(n), the number of divisors of n, is usually written d(n) and σ1(n), the sum of the divisors of n, is usually written σ(n).
If s > 0,
\begin{align} \sigmas(n)&=ns\zeta(s+1)\left(
c1(n) | |
1s+1 |
+
c2(n) | |
2s+1 |
+
c3(n) | |
3s+1 |
+ … \right)\\ \sigma-s(n)&=\zeta(s+1)\left(
c1(n) | + | |
1s+1 |
c2(n) | + | |
2s+1 |
c3(n) | |
3s+1 |
+ … \right) \end{align}
Setting s = 1 gives
\sigma(n)=
\pi2 | |
6 |
n\left(
c1(n) | |
1 |
+
c2(n) | |
4 |
+
c3(n) | |
9 |
+ … \right).
If the Riemann hypothesis is true, and
-\tfrac12<s<\tfrac12,
\sigmas(n)=\zeta(1-s)\left(
c1(n) | |
11-s |
+
c2(n) | |
21-s |
+
c3(n) | |
31-s |
+ … \right)=ns\zeta(1+s)\left(
c1(n) | |
11+s |
+
c2(n) | |
21+s |
+
c3(n) | |
31+s |
+ … \right).
d(n) = σ0(n) is the number of divisors of n, including 1 and n itself.
\begin{align} -d(n)&=
log1 | |
1 |
c1(n)+
log2 | |
2 |
c2(n)+
log3 | |
3 |
c3(n)+ … \\ -d(n)(2\gamma+logn)&=
log21 | |
1 |
c1(n)+
log22 | |
2 |
c2(n)+
log23 | |
3 |
c3(n)+ … \end{align}
where γ = 0.5772... is the Euler–Mascheroni constant.
Euler's totient function φ(n) is the number of positive integers less than n and coprime to n. Ramanujan defines a generalization of it, if
a1 | |
n=p | |
1 |
a2 | |
p | |
2 |
a3 | |
p | |
3 |
…
is the prime factorization of n, and s is a complex number, let
-s | |
\varphi | |
1 |
-s | |
)(1-p | |
2 |
-s | |
)(1-p | |
3 |
) … ,
so that φ1(n) = φ(n) is Euler's function.[18]
He proves that
\mu(n)ns | |
\varphis(n)\zeta(s) |
=
infty | |
\sum | |
\nu=1 |
\mu(n\nu) | |
\nus |
and uses this to show that
\varphis(n)\zeta(s+1) | = | |
ns |
\mu(1)c1(n) | + | |
\varphis+1(1) |
\mu(2)c2(n) | + | |
\varphis+1(2) |
\mu(3)c3(n) | |
\varphis+1(3) |
+ … .
Letting s = 1,
\varphi(n)=
6 | |
\pi2 |
n\left(c1(n)-
c2(n) | - | |
22-1 |
c3(n) | - | |
32-1 |
c5(n) | + | |
52-1 |
c6(n) | |
(22-1)(32-1) |
-
c7(n) | + | |
72-1 |
c10(n) | |
(22-1)(52-1) |
- … \right).
Note that the constant is the inverse[19] of the one in the formula for σ(n).
Von Mangoldt's function unless n = pk is a power of a prime number, in which case it is the natural logarithm log p.
-Λ(m)=cm(1)+
1 | |
2 |
cm(2)+
13c | |
m(3)+ … |
For all n > 0,
0=c1(n)+
12c | |
2(n)+ |
13c | |
3(n)+ |
… .
This is equivalent to the prime number theorem.[20] [21]
r2s(n) is the number of way of representing n as the sum of 2s squares, counting different orders and signs as different (e.g., r2(13) = 8, as 13 = (±2)2 + (±3)2 = (±3)2 + (±2)2.)
Ramanujan defines a function δ2s(n) and references a paper[22] in which he proved that r2s(n) = δ2s(n) for s = 1, 2, 3, and 4. For s > 4 he shows that δ2s(n) is a good approximation to r2s(n).
s = 1 has a special formula:
\delta2(n)=\pi\left(
c1(n) | |
1 |
-
c3(n) | |
3 |
+
c5(n) | |
5 |
- … \right).
In the following formulas the signs repeat with a period of 4.
\begin{align} \delta2s(n)&=
\pisns-1 | |
(s-1)! |
\left(
c1(n) | |
1s |
+
c4(n) | |
2s |
+
c3(n) | + | |
3s |
c8(n) | |
4s |
+
c5(n) | |
5s |
+
c12(n) | |
6s |
+
c7(n) | |
7s |
+
c16(n) | |
8s |
+ … \right)&&s\equiv0\pmod4\\[6pt] \delta2s(n)&=
\pisns-1 | |
(s-1)! |
\left(
c1(n) | |
1s |
-
c4(n) | |
2s |
+
c3(n) | |
3s |
-
c8(n) | |
4s |
+
c5(n) | |
5s |
-
c12(n) | |
6s |
+
c7(n) | |
7s |
-
c16(n) | |
8s |
+ … \right)&&s\equiv2\pmod4\\[6pt] \delta2s(n)&=
\pisns-1 | |
(s-1)! |
\left(
c1(n) | |
1s |
+
c4(n) | |
2s |
-
c3(n) | |
3s |
+
c8(n) | |
4s |
+
c5(n) | |
5s |
+
c12(n) | |
6s |
-
c7(n) | |
7s |
+
c16(n) | |
8s |
+ … \right)&&s\equiv1\pmod4ands>1\\[6pt] \delta2s(n)&=
\pisns-1 | \left( | |
(s-1)! |
c1(n) | |
1s |
-
c4(n) | |
2s |
-
c3(n) | |
3s |
-
c8(n) | |
4s |
+
c5(n) | - | |
5s |
c12(n) | - | |
6s |
c7(n) | - | |
7s |
c16(n) | |
8s |
+ … \right)&&s\equiv3\pmod4\\ \end{align}
and therefore,
\begin{align} r2(n)&=\pi\left(
c1(n) | |
1 |
-
c3(n) | |
3 |
+
c5(n) | |
5 |
-
c7(n) | |
7 |
+
c11(n) | - | |
11 |
c13(n) | |
13 |
+
c15(n) | |
15 |
-
c17(n) | |
17 |
+ … \right)\\[6pt] r4(n)&=\pi2n\left(
c1(n) | |
1 |
-
c4(n) | |
4 |
+
c3(n) | |
9 |
-
c8(n) | |
16 |
+
c5(n) | |
25 |
-
c12(n) | |
36 |
+
c7(n) | |
49 |
-
c16(n) | |
64 |
+ … \right)\\[6pt] r6(n)&=
\pi3n2 | |
2 |
\left(
c1(n) | |
1 |
-
c4(n) | |
8 |
-
c3(n) | |
27 |
-
c8(n) | |
64 |
+
c5(n) | |
125 |
-
c12(n) | |
216 |
-
c7(n) | |
343 |
-
c16(n) | |
512 |
+ … \right)\\[6pt] r8(n)&=
\pi4n3 | \left( | |
6 |
c1(n) | |
1 |
+
c4(n) | |
16 |
+
c3(n) | |
81 |
+
c8(n) | |
256 |
+
c5(n) | |
625 |
+
c12(n) | |
1296 |
+
c7(n) | |
2401 |
+
c16(n) | |
4096 |
+ … \right) \end{align}
r'2s(n)
The analysis here is similar to that for squares. Ramanujan refers to the same paper as he did for the squares, where he showed that there is a function
\delta'2s(n)
r'2s(n)=\delta'2s(n)
\delta'2s(n)
r'2s(n).
Again, s = 1 requires a special formula:
\delta'2(n)=
\pi | \left( | |
4 |
c1(4n+1) | - | |
1 |
c3(4n+1) | |
3 |
+
c5(4n+1) | |
5 |
-
c7(4n+1) | |
7 |
+ … \right).
If s is a multiple of 4,
\begin{align} \delta'2s(n)&=
| \left(n+ | |||||
(s-1)! |
s | |
4\right) |
s-1\left(
| ||||||||
1s |
+
| ||||||||
3s |
+
| ||||||||
5s |
+ … \right)&&s\equiv0\pmod4\\[6pt] \delta'2s(n)&=
| \left(n+ | |||||
(s-1)! |
s | |
4\right) |
s-1\left(
| ||||||||
1s |
+
| ||||||||
3s |
+
| ||||||||
5s |
+ … \right)&&s\equiv2\pmod4\\[6pt] \delta'2s(n)&=
| \left(n+ | |||||
(s-1)! |
s | |
4\right) |
s-1\left(
c1(4n+s) | |
1s |
-
c3(4n+s) | + | |
3s |
c5(4n+s) | |
5s |
- … \right)&&s\equiv1\pmod2ands>1 \end{align}
Therefore,
\begin{align} r'2(n)&=
\pi | \left( | |
4 |
c1(4n+1) | |
1 |
-
c3(4n+1) | |
3 |
+
c5(4n+1) | |
5 |
-
c7(4n+1) | |
7 |
+ … \right)\\[6pt] r'4(n)&=\left(
\pi | |
2 |
| ||||||||
\right) | + |
c3(2n+1) | |
9 |
+
c5(2n+1) | |
25 |
+ … \right)\\[6pt] r'6(n)&=
| \left(n+ | |||||
2 |
34\right) | \left( | |
2 |
c1(4n+3) | - | |
1 |
c3(4n+3) | |
27 |
+
c5(4n+3) | |
125 |
- … \right)\\[6pt] r'8(n)&=
| |||||
6 |
(n+1)3\left(
c1(n+1) | |
1 |
+
c3(n+1) | |
81 |
+
c5(n+1) | |
625 |
+ … \right)\end{align}
Let
\begin{align} Tq(n)&=cq(1)+cq(2)+ … +cq(n)\\ Uq(n)&=Tq(n)+\tfrac12\phi(q) \end{align}
Then for,
\begin{align} \sigma-s(1)+ … +\sigma-s(n)&=\zeta(s+1)\left(n+
T2(n) | |
2s+1 |
+
T3(n) | + | |
3s+1 |
T4(n) | |
4s+1 |
+ … \right)\\ &=\zeta(s+1)\left(n+\tfrac12+
U2(n) | |
2s+1 |
+
U3(n) | |
3s+1 |
+
U4(n) | |
4s+1 |
+ … \right)-\tfrac12\zeta(s)\\ d(1)+ … +d(n)&=-
T2(n)log2 | |
2 |
-
T3(n)log3 | |
3 |
-
T4(n)log4 | |
4 |
- … \\ d(1)log1+ … +d(n)logn&=-
| - | |||||||
2 |
| - | |||||||
3 |
| |||||||
4 |
- … \\ r2(1)+ … +r2(n)&=\pi\left(n-
T3(n) | + | |
3 |
T5(n) | - | |
5 |
T7(n) | |
7 |
+ … \right) \end{align}
These sums are obviously of great interest, and a few of their properties have been discussed already. But, so far as I know, they have never been considered from the point of view which I adopt in this paper; and I believe that all the results which it contains are new.(Papers, p. 179). In a footnote cites pp. 360 - 370 of the Dirichlet–Dedekind German: Vorlesungen über Zahlentheorie, 4th ed.
The majority of my formulae are "elementary" in the technical sense of the word - they can (that is to say) be proved by a combination of processes involving only finite algebra and simple general theorems concerning infinite series(Papers, p. 179)
6 | < | |
\pi2 |
\sigma(n)\phi(n) | |
n2 |
<1.