The Rogers - Ramanujan continued fraction is a continued fraction discovered by and independently by Srinivasa Ramanujan, and closely related to the Rogers–Ramanujan identities. It can be evaluated explicitly for a broad class of values of its argument.
Given the functions
G(q)
H(q)
q=e2\pi
\begin{align}G(q)&=
infty | |
\sum | |
n=0 |
| |||||
(1-q)(1-q2) … (1-qn) |
infty | |
=\sum | |
n=0 |
| |||||
(q;q)n |
=
1 | |||||||||||||||
|
\\[6pt] &=
infty | |
\prod | |
n=1 |
1 | |
(1-q5n-1)(1-q5n-4) |
\\[6pt] &=\sqrt[60]{qj}2F1\left(-\tfrac{1}{60},\tfrac{19}{60};\tfrac{4}{5};\tfrac{1728}{j}\right)\\[6pt] &=\sqrt[60]{q\left(j-1728\right)}2F1\left(-\tfrac{1}{60},\tfrac{29}{60};\tfrac{4}{5};-\tfrac{1728}{j-1728}\right)\\[6pt] &=1+q+q2+q3+2q4+2q5+3q6+ … \end{align}
and,
\begin{align}H(q)&=
infty | |
\sum | |
n=0 |
| |||||
(1-q)(1-q2) … (1-qn) |
infty | |
=\sum | |
n=0 |
| |||||
(q;q)n |
=
1 | ||||||||||||||||||
|
\\[6pt] &=
infty | |
\prod | |
n=1 |
1 | \\[6pt] &= | |
(1-q5n-2)(1-q5n-3) |
1 | |
\sqrt[60]{q11j11 |
with the coefficients of the q-expansion being and, respectively, where
(a;q)infty
\begin{align}R(q)&=
| ||||||||||
|
=
| ||||
q |
infty | |
\prod | |
n=1 |
(1-q5n-1)(1-q5n-4) | |
(1-q5n-2)(1-q5n-3) |
=q1/5
infty | |
\prod | |
n=1 |
(1-qn)(n|5)\\[8pt]&=\cfrac{q1/5
(n\midm)
j
q=e2\pi
q=e2\pi
q=e\pi
If q is the nome or its square, then
| ||||
q |
G(q)
| ||||
q |
H(q)
R(q)
\tau
\tau
q=e\pi
R(q)=\cfrac{q1/5
\tau=i
R(e-\pi)=
| ||||
\cfrac{e |
when
\tau=2i
R(e-2\pi)=
| ||||
\cfrac{e |
when
\tau=4i
R(e-4\pi)=
| ||||
\cfrac{e |
when
\tau=2\sqrt{5}i
R(e-2\sqrt{5\pi})=
| ||||
\cfrac{e |
when
\tau=5i
R(e-5\pi)=\cfrac{e-\pi
when
\tau=10i
R(e-10\pi)=\cfrac{e-2\pi
when
\tau=20i
R(e-20\pi)=\cfrac{e-4\pi
and
\varphi=\tfrac{1+\sqrt5}{2}
R(e-2\pi)
x4+2x3-6x2-2x+1=0
while
R(e-\pi)
R(e-4\pi)
y4+2\varphi4y3+6\varphi2y2-2\varphi4y+1=0
(since
\varphi
R(e-2\pi/m)
R(e-2\pi)
l[R(e-2\pi/m)+\varphir]l[R(e-2\pi)+\varphir]=\sqrt5\varphi
The algebraic degree k of
R(e-\pi)
n=1,2,3,4,...
k=8,4,32,8,...
Incidentally, these continued fractions can be used to solve some quintic equations as shown in a later section.
Interestingly, there are explicit formulas for
G(q)
H(q)
j(\tau)
R(q)
j(\tau)
q=e2\pii\tau
j(\tau),G(q),H(q)
r=R(q)
q
\begin{align} G(q)&=
infty | |
\prod | |
n=1 |
1 | |
(1-q5n-1)(1-q5n-4) |
\\[6pt] &=q1/60
j(\tau)1/60 | |
(r20-228r15+494r10+228r5+1)1/20 |
\end{align}
\begin{align} H(q)&=
infty | |
\prod | |
n=1 |
1 | |
(1-q5n-2)(1-q5n-3) |
\\[6pt] &=
-1 | |
q11/60 |
(r20-228r15+494r10+228r5+1)11/20 | |
j(\tau)11/60(r10+11r5-1) |
\end{align}
Of course, the secondary formulas imply that
q-1/60G(q)
q11/60H(q)
\tau
\begin{align} G(e-2\pi) &=(e-2\pi)1/60
1{(5\varphi) | |
1/4 |
and,
\begin{align} G(e-4\pi) &=(e-4\pi)1/60
1{(5\varphi | |
3) |
1/4(\varphi+\sqrt[4]{5})1/4
and so on, with
\varphi
In the following we express the essential theorems of the Rogers-Ramanujan continued fractions R and S by using the tangential sums and tangential differences:
a ⊕ b=\tanl[\arctan(a)+\arctan(b)r]=
a+b | |
1-ab |
c\ominusd=\tanl[\arctan(c)-\arctan(d)r]=
c-d | |
1+cd |
The elliptic nome and the complementary nome have this relationship to each other:
ln(q)ln(q1)=\pi2
The complementary nome of a modulus k is equal to the nome of the Pythagorean complementary modulus:
q1(k)=q(k')=q(\sqrt{1-k2})
These are the reflection theorems for the continued fractions R and S:
S(q) ⊕ S(q1)=\Phi | |||||||
R(q2) ⊕
\Phi-1 |
The letter
\Phi
\Phi=\tfrac{1}{2}(\sqrt{5}+1)=\cot[\tfrac{1}{2}\arctan(2)]=2\cos(\tfrac{1}{5}{\pi})
\Phi-1=\tfrac{1}{2}(\sqrt{5}-1)=\tan[\tfrac{1}{2}\arctan(2)]=2\sin(\tfrac{1}{10}{\pi})
The theorems for the squared nome are constructed as follows:
R(q)2R(q2)-1 ⊕ R(q)R(q2)2=1 | |
S(q)2R(q2)-1\ominusS(q)R(q2)2=1 |
Following relations between the continued fractions and the Jacobi theta functions are given:
S(q) ⊕ R(q2)=
| ||||
R(q)\ominusR(q2)=
|
Into the now shown theorems certain values are inserted:
Sl[\exp(-\pi)r] ⊕ Sl[\exp(-\pi)r]=\Phi
Therefore following identity is valid:
Sl[\exp(-\pi)r]=\tanl[\tfrac{1}{2}\arctan(\Phi)r]=\tanl[\tfrac{1}{4}\pi-\tfrac{1}{4}\arctan(2)r] |
In an analogue pattern we get this result:
Rl[\exp(-2\pi)r] ⊕ Rl[\exp(-2\pi)r]=\Phi-1
Therefore following identity is valid:
Rl[\exp(-2\pi)r]=\tanl[\tfrac{1}{2}\arctan(\Phi-1)r]=\tanl[\tfrac{1}{4}\arctan(2)r] |
Furthermore we get the same relation by using the above mentioned theorem about the Jacobi theta functions:
Sl[\exp(-\pi)r] ⊕ Rl[\exp(-2\pi)r]=S(q) ⊕ R(q2)l[q=\exp(-\pi)r]=
=
\vartheta00(q1/5)2-\vartheta00(q)2 | |
5\vartheta00(q5)2-\vartheta00(q)2 |
l[q=\exp(-\pi)r]=1
This result appears because of the Poisson summation formula and this equation can be solved in this way:
Rl[\exp(-2\pi)r]=1\ominusSl[\exp(-\pi)r]=1\ominus\tanl[\tfrac{1}{4}\pi-\tfrac{1}{4}\arctan(2)r]=\tanl[\tfrac{1}{4}\arctan(2)r]
By taking the other mentioned theorem about the Jacobi theta functions a next value can be determined:
Rl[\exp(-\pi)r]\ominusRl[\exp(-2\pi)r]=R(q)\ominusR(q2)l[q=\exp(-\pi)r]=
=
\vartheta01(q)2-\vartheta01(q1/5)2 | |
5\vartheta01(q5)2-\vartheta01(q)2 |
l[q=\exp(-\pi)r]=
\sqrt[4]{5 | |
- |
1}{\sqrt[4]{5}+1}=\sqrt[4]{5}\ominus1=\tanl[\arctan(\sqrt[4]{5})-\tfrac{1}{4}\pir]
That equation chain leads to this tangential sum:
Rl[\exp(-\pi)r]=Rl[\exp(-2\pi)r] ⊕ \tanl[\arctan(\sqrt[4]{5})-\tfrac{1}{4}\pir]
And therefore following result appears:
Rl[\exp(-\pi)r]=\tanl[\tfrac{1}{4}\arctan(2)+\arctan(\sqrt[4]{5})-\tfrac{1}{4}\pir] |
In the next step we use the reflection theorem for the continued fraction R again:
Rl[\exp(-\pi)r] ⊕ Rl[\exp(-4\pi)r]=\Phi-1
Rl[\exp(-4\pi)r]=\tanl[\tfrac{1}{2}\arctan(2)r]\ominusRl[\exp(-\pi)r]
And a further result appears:
Rl[\exp(-4\pi)r]=\tanl[\tfrac{1}{4}\arctan(2)-\arctan(\sqrt[4]{5})+\tfrac{1}{4}\pir] |
The reflection theorem is now used for following values:
Rl[\exp(-\sqrt{2}\pi)r] ⊕ Rl[\exp(-2\sqrt{2}\pi)r]=\Phi-1
The Jacobi theta theorem leads to a further relation:
Rl[\exp(-\sqrt{2}\pi)r]\ominusRl[\exp(-2\sqrt{2}\pi)r]=R(q)\ominusR(q2)l[q=\exp(-\sqrt{2}\pi)r]=
=
\vartheta01(q)2-\vartheta01(q1/5)2 | |
5\vartheta01(q5)2-\vartheta01(q)2 |
l[q=\exp(-\sqrt{2}\pi)r]=\tanl[2\arctan(\tfrac{1}{3}\sqrt{5}-\tfrac{1}{3}\sqrt[3]{6\sqrt{30}+4\sqrt{5}}+\tfrac{1}{3}\sqrt[3]{6\sqrt{30}-4\sqrt{5}})-\tfrac{1}{4}\pir]
By tangential adding the now mentioned two theorems we get this result:
Rl[\exp(-\sqrt{2}\pi)r] ⊕ Rl[\exp(-\sqrt{2}\pi)r]=\Phi-1 ⊕ \tanl[2\arctan(\tfrac{1}{3}\sqrt{5}-\tfrac{1}{3}\sqrt[3]{6\sqrt{30}+4\sqrt{5}}+\tfrac{1}{3}\sqrt[3]{6\sqrt{30}-4\sqrt{5}})-\tfrac{1}{4}\pir]
Rl[\exp(-\sqrt{2}\pi)r]=\tanl[\arctan(\tfrac{1}{3}\sqrt{5}-\tfrac{1}{3}\sqrt[3]{6\sqrt{30}+4\sqrt{5}}+\tfrac{1}{3}\sqrt[3]{6\sqrt{30}-4\sqrt{5}})-\tfrac{1}{4}\arccot(2)r] |
By tangential substraction that result appears:
Rl[\exp(-2\sqrt{2}\pi)r] ⊕ Rl[\exp(-2\sqrt{2}\pi)r]=\Phi-1\ominus\tanl[2\arctan(\tfrac{1}{3}\sqrt{5}-\tfrac{1}{3}\sqrt[3]{6\sqrt{30}+4\sqrt{5}}+\tfrac{1}{3}\sqrt[3]{6\sqrt{30}-4\sqrt{5}})-\tfrac{1}{4}\pir]
Rl[\exp(-2\sqrt{2}\pi)r]=\tanl[\tfrac{1}{4}\arccot(-2)-\arctan(\tfrac{1}{3}\sqrt{5}-\tfrac{1}{3}\sqrt[3]{6\sqrt{30}+4\sqrt{5}}+\tfrac{1}{3}\sqrt[3]{6\sqrt{30}-4\sqrt{5}})r] |
In an alternative solution way we use the theorem for the squared nome:
Rl[\exp(-\sqrt{2}\pi)r]2Rl[\exp(-2\sqrt{2}\pi)r]-1 ⊕ Rl[\exp(-\sqrt{2}\pi)r]Rl[\exp(-2\sqrt{2}\pi)r]2=1
l\{Rl[\exp(-\sqrt{2}\pi)r]2Rl[\exp(-2\sqrt{2}\pi)r]-1+1r\}l\{Rl[\exp(-\sqrt{2}\pi)r]Rl[\exp(-2\sqrt{2}\pi)r]2+1r\}=2
Now the reflection theorem is taken again:
Rl[\exp(-2\sqrt{2}\pi)r]=\Phi-1\ominusRl[\exp(-\sqrt{2}\pi)r]
Rl[\exp(-2\sqrt{2}\pi)r]=
1-\PhiRl[\exp(-\sqrt{2 | |
\pi)r]}{\Phi |
+Rl[\exp(-\sqrt{2}\pi)r]}
The insertion of the last mentioned expression into the squared nome theorem gives that equation:
l\{Rl[\exp(-\sqrt{2}\pi)r]2
\Phi+Rl[\exp(-\sqrt{2 | |
\pi)r]}{1 |
-\PhiRl[\exp(-\sqrt{2}\pi)r]}+1r\}l\langleRl[\exp(-\sqrt{2}\pi)r]
l\{1-\PhiRl[\exp(-\sqrt{2 | |
\pi)r]r\} |
2}{l\{\Phi+Rl[\exp(-\sqrt{2}\pi)r]r\}2}+1r\rangle=2
Erasing the denominators gives an equation of sixth degree:
Rl[\exp(-\sqrt{2}\pi)r]6+2\Phi-2Rl[\exp(-\sqrt{2}\pi)r]5-\sqrt{5}\Phi-1Rl[\exp(-\sqrt{2}\pi)r]4+
+2\sqrt{5}\PhiRl[\exp(-\sqrt{2}\pi)r]3+\sqrt{5}\Phi-1Rl[\exp(-\sqrt{2}\pi)r]2+2\Phi-2Rl[\exp(-\sqrt{2}\pi)r]-1=0
The solution of this equation is the already mentioned solution:
Rl[\exp(-\sqrt{2}\pi)r]=\tanl[\arctan(\tfrac{1}{3}\sqrt{5}-\tfrac{1}{3}\sqrt[3]{6\sqrt{30}+4\sqrt{5}}+\tfrac{1}{3}\sqrt[3]{6\sqrt{30}-4\sqrt{5}})-\tfrac{1}{4}\arccot(2)r]
R(q)
1 | |
R(q) |
-R(q)=
| |||||
η(5\tau) |
+1
1 | |
R5(q) |
-R5(q)=\left[
η(\tau) | |
η(5\tau) |
\right]6+11
The Rogers-Ramanujan continued fraction can also be expressed in terms of the Jacobi theta functions. Recall the notation,
\begin{align} \vartheta10(0;\tau)&=\theta2(q)=\sum
infty | |
n=-infty |
(n+1/2)2 | |
q |
\\ \vartheta00(0;\tau)&=\theta3(q)=\sum
infty | |
n=-infty |
n2 | |
q |
\\ \vartheta01(0;\tau)&=\theta4(q)=\sum
infty | |
n=-infty |
(-1)n
n2 | |
q |
\end{align}
The notation
\thetan
4 | |
\theta | |
4 |
4 | |
=\theta | |
3 |
R(x)=\tanl\{
1 | \arccotl[ | |
2 |
1 | |
2 |
+
\theta4(x1/5)[5\theta4(x5)2-\theta4(x)2] | ||||||||||||
|
r]r\}
R(x)=\tanl\{
1 | \arccotl[ | |
2 |
1 | +( | |
2 |
| ||||||||||||||||||||||
|
)1/3r]r\}
R(x)=\tanl\{
1 | \arctanl[ | |
2 |
1 | |
2 |
-
| |||||||||
|
r]r\}1/5 x \tanl\{
1 | \arccotl[ | |
2 |
1 | |
2 |
-
| |||||||||
|
r]r\}2/5
R(x)=\tanl\{
1 | \arctanl[ | |
2 |
1 | |
2 |
-
| ||||||||||
|
r]r\}2/5 x \cotl\{
1 | \arccotl[ | |
2 |
1 | |
2 |
-
| ||||||||||
|
r]r\}1/5
Note, however, that theta functions normally use the nome, while the Dedekind eta function uses the square of the nome, thus the variable x has been employed instead to maintain consistency between all functions. For example, let
\tau=\sqrt{-1}
x=e-\pi
R(e-\pi)=
1 | |
2 |
\varphi(\sqrt{5}-\varphi3/2)(\sqrt[4]{5}+\varphi3/2)=0.511428...
One can also define the elliptic nome,
q(k)=\exp[-\piK(\sqrt{1-k2})/K(k)]
The small letter k describes the elliptic modulus and the big letter K describes the complete elliptic integral of the first kind. The continued fraction can then be also expressed by the Jacobi elliptic functions as follows:
R(q(k))=\tanl\{
1 | |
2 |
\arctanyr\}1/5\tanl\{
1 | |
2 |
\arccotyr\}2/5=\left\{
\sqrt{y2+1 | |
-1}{y}\right\} |
1/5\left\{y\left[\sqrt{
1 | |
y2 |
+1}-1\right]\right\}2/5
with
y= | 2k2sn[\tfrac{2 |
5 |
K(k);k]2sn[\tfrac{4}{5}K(k);k]2}{5-k2sn[\tfrac{2}{5}K(k);k]2sn[\tfrac{4}{5}K(k);k]2}.
One formula involving the j-function and the Dedekind eta function is this:
j(\tau)=
(x2+10x+5)3 | |
x |
where
x=\left[
\sqrt{5 | |
η(5\tau)}{η(\tau)}\right] |
6.
1 | |
R5(q) |
-R5(q)=\left[
η(\tau) | |
η(5\tau) |
\right]6+11
Eliminating the eta quotient
x
r=R(q)
\begin{align} &j(\tau)=-
(r20-228r15+494r10+228r5+1)3 | |
r5(r10+11r5-1)5 |
\\[6pt] &j(\tau)-1728=-
(r30+522r25-10005r20-10005r10-522r5+1)2 | |
r5(r10+11r5-1)5 |
\end{align}
where the numerator and denominator are polynomial invariants of the icosahedron. Using the modular equation between
R(q)
R(q5)
\begin{align} &j(5\tau)=-
(r20+12r15+14r10-12r5+1)3 | |
r25(r10+11r5-1) |
\\[6pt] &j(5\tau)-1728=-
(r30+18r25+75r20+75r10-18r5+1)2 | |
r25(r10+11r5-1) |
\end{align}
Let
| ||||
z=r |
j(5\tau)=-
\left(z2+12z+16\right)3 | |
z+11 |
where
\begin{align} &zinfty=-\left[
\sqrt{5 | |
η(25\tau)}{η(5\tau)}\right] |
6-11, z | |
0=-\left[ |
η(\tau) | |
η(5\tau) |
6-11, z | ||||||||
\right] | ||||||||
|
\right]6-11,\\[6pt] &
z | ||||||||
|
\right]6-11,
z | ||||||||
|
6-11, z | |
\right] | |
4=-\left[ |
| |||||
η(5\tau) |
\right]6-11 \end{align}
which in fact is the j-invariant of the elliptic curve,
y2+(1+r5)xy+r5y=x3+r5x2
X1(5)
For convenience, one can also use the notation
r(\tau)=R(q)
j(-\tfrac{1}{\tau})=j(\tau)
and the Dedekind eta function has,
η(-\tfrac{1}{\tau})=\sqrt{-i\tau}η(\tau)
\varphi
r(-\tfrac{1}{\tau})=
1-\varphir(\tau) | |
\varphi+r(\tau) |
Incidentally,
r(\tfrac{7+i}{10})=i
There are modular equations between
R(q)
R(qn)
For
n=2
u=R(q)
v=R(q2)
v-u2=(v+u2)uv2.
For
n=3
u=R(q)
v=R(q3)
(v-u3)(1+uv3)=3u2v2.
For
n=5
u=R(q)
v=R(q5)
v(v4-3v3+4v2-2v+1)=(v4+2v3+4v2+3v+1)u5.
Or equivalently for
n=5
u=R(q)
v=R(q5)
\varphi=\tfrac{1+\sqrt5}2
u5=
v(v2-\varphi2v+\varphi2)(v2-\varphi-2v+\varphi-2) | |
(v2+v+\varphi2)(v2+v+\varphi-2) |
.
For
n=11
u=R(q)
v=R(q11)
uv(u10+11u5-1)(v10+11v5-1)=(u-v)12.
Regarding
n=5
v10+11v5-1=(v2+v-1)(v4-3v3+4v2-2v+1)(v4+2v3+4v2+3v+1).
Ramanujan found many other interesting results regarding
R(q)
a,b\inR+
\varphi
If
ab=\pi2
l[R(e-2a)+\varphil]l[R(e-2b)+\varphir]=\sqrt{5}\varphi.
If
5ab=\pi2
l[R5(e-2a)+\varphi5l]l[R5(e-2b)+\varphi5r]=5\sqrt{5}\varphi5.
The powers of
R(q)
R3(q)=
\alpha | |
\beta |
where
| ||||
\alpha=\sum | ||||
n=0 |
infty | |
-\sum | |
n=0 |
q3n+1 | |
1-q5n+3 |
,
| ||||
\beta=\sum | ||||
n=0 |
infty | |
-\sum | |
n=0 |
q4n+3 | |
1-q5n+4 |
.
For its fifth power, let
w=R(q)R2(q2)
R5(q)=w\left(
1-w | |
1+w |
\right)2, R5(q2)=
| ||||
w |
\right)
The general quintic equation in Bring-Jerrard form:
x5-5x-4a=0
for every real value
a>1
R(q)
q(k)=\exp[-\piK(\sqrt{1-k2})/K(k)].
To solve this quintic, the elliptic modulus must first be determined as
k=\tan[\tfrac{1}{4}\pi-\tfrac{1}{4}\arccsc(a2)].
Then the real solution is
\begin{align}x&=
2-l\{1-R[q(k)]r\ | |
l\{1+R[q(k) |
2]r\}}{\sqrt{R[q(k)]R[q(k)2]}\sqrt[4]{4\cot\langle4\arctan\{S\}\rangle-3}}\\&=
2-l\{1-R[q(k)]r\ | |
l\{1+R[q(k) |
2]r\}}{\sqrt{R[q(k)]R[q(k)
| |||||
+ |
2 | + | |
S+1 |
1 | |
S |
-S-3}}.\end{align}
where
S=R[q(k)]R2[q(k)2].
R(q)
S
R5[q(k)]=S\left(
1-S | |
1+S |
\right)2
x5-x-1=0
Transform to,
(\sqrt[4]{5}x)5-5(\sqrt[4]{5}x)-4(\tfrac{5}{4}\sqrt[4]{5})=0
thus,
a=\tfrac{5}{4}\sqrt[4]{5}
k=\tan[\tfrac{1}{4}\pi-\tfrac{1}{4}\arccsc(a2)]=\tfrac{55/4+\sqrt{25\sqrt{5}-16}}{55/4+\sqrt{25\sqrt{5}+16}}
q(k)=0.0851414716...
R[q(k)]=0.5633613184...
R[q(k)2]=0.3706122329...
and the solution is:
x=
2-l\{1-R[q(k)]r\ | |
l\{1+R[q(k) |
2]r\}}{\sqrt{R[q(k)]R[q(k)2]}\sqrt[4]{20\cot\langle4\arctan\{R[q(k)]R[q(k)2]2\}\rangle-15}}=1.167303978...
and can not be represented by elementary root expressions.
x5-5x-4l(\sqrt[4]{\tfrac{81}{32}}r)=0
thus,
a=\sqrt[4]{\tfrac{81}{32}}
Given the more familiar continued fractions with closed-forms,
r1=R(e-\pi)=\tfrac{1}{2}\varphi(\sqrt{5}-\varphi3/2)(\sqrt[4]{5}+\varphi3/2)=0.511428...
r2=R(e-2\pi)=\sqrt[4]{5}\varphi1/2-\varphi=0.284079...
r4=R(e-4\pi)=\tfrac{1}{2}\varphi(\sqrt{5}-\varphi3/2)(-\sqrt[4]{5}+\varphi3/2)=0.081002...
with golden ratio
\varphi=\tfrac{1+\sqrt5}{2}
\begin{align}x &=\sqrt[4]{5}
2-l\{1-r1r\ | |
l\{1+r |
2r\}}{\sqrt{r1r2}\sqrt[4]{20\cot\langle4\arctan\{r1r
2\}\rangle | |
2 |
-15}}\\[6pt] &=\sqrt[4]{5}
2-l\{1-r2r\ | |
l\{1+r |
4r\}}{\sqrt{r2r4}\sqrt[4]{20\cot\langle4\arctan\{r2r
2\}\rangle | |
4 |
-15}}\\[6pt] &=\sqrt[4]{8}=1.681792...\end{align}