Rain shadow explained

A rain shadow is an area of significantly reduced rainfall behind a mountainous region, on the side facing away from prevailing winds, known as its leeward side.

Evaporated moisture from water bodies (such as oceans and large lakes) is carried by the prevailing onshore breezes towards the drier and hotter inland areas. When encountering elevated landforms, the moist air is driven upslope towards the peak, where it expands, cools, and its moisture condenses and starts to precipitate. If the landforms are tall and wide enough, most of the humidity will be lost to precipitation over the windward side (also known as the rainward side) before ever making it past the top. As the air descends the leeward side of the landforms, it is compressed and heated, producing foehn winds that absorb moisture downslope and cast a broad "shadow" of dry climate region behind the mountain crests. This climate typically takes the form of shrub–steppe, xeric shrublands or even deserts.

The condition exists because warm moist air rises by orographic lifting to the top of a mountain range. As atmospheric pressure decreases with increasing altitude, the air has expanded and adiabatically cooled to the point that the air reaches its adiabatic dew point (which is not the same as its constant pressure dew point commonly reported in weather forecasts). At the adiabatic dew point, moisture condenses onto the mountain and it precipitates on the top and windward sides of the mountain. The air descends on the leeward side, but due to the precipitation it has lost much of its moisture. Typically, descending air also gets warmer because of adiabatic compression (as with foehn winds) down the leeward side of the mountain, which increases the amount of moisture that it can absorb and creates an arid region.[1]

Notably affected regions

There are regular patterns of prevailing winds found in bands round Earth's equatorial region. The zone designated the trade winds is the zone between about 30° N and 30° S, blowing predominantly from the northeast in the Northern Hemisphere and from the southeast in the Southern Hemisphere.[2] The westerlies are the prevailing winds in the middle latitudes between 30 and 60 degrees latitude, blowing predominantly from the southwest in the Northern Hemisphere and from the northwest in the Southern Hemisphere.[3] Some of the strongest westerly winds in the middle latitudes can come in the Roaring Forties of the Southern Hemisphere, between 30 and 50 degrees latitude.[4]

Examples of notable rain shadowing include:

Africa

Northern Africa

Southern Africa

Asia

Central and Northern Asia

Eastern Asia

Southern Asia

Western Asia

Europe

Central Europe

Northern Europe

Southern Europe

Caribbean

North American mainland

On the largest scale, the entirety of the North American Interior Plains are shielded from the prevailing Westerlies carrying moist Pacific weather by the North American Cordillera. More pronounced effects are observed, however, in particular valley regions within the Cordillera, in the direct lee of specific mountain ranges. This includes much of the Basin and Range Province in the United States and Mexico.

The Pacific Coast Ranges create rain shadows near the West Coast:

Most rain shadows in the western United States are due to the Sierra Nevada mountains in California and Cascade Mountains, mostly in Oregon and Washington.[13]

The Colorado Front Range is limited to precipitation that crosses over the Continental Divide. While many locations west of the Divide may receive as much as 40inches of precipitation per year, some places on the eastern side, notably the cities of Denver and Pueblo, Colorado, typically receive only about 12 to 19 inches. Thus, the Continental Divide acts as a barrier for precipitation. This effect applies only to storms traveling west-to-east. When low pressure systems skirt the Rocky Mountains and approach from the south, they can generate high precipitation on the eastern side and little or none on the western slope.

Further east:

Oceania

Australia

Pacific Islands

South America

See also

External links

Notes and References

  1. Book: Whiteman, C. David. Mountain Meteorology: Fundamentals and Applications . Oxford University Press. 2000. 0-19-513271-8.
  2. Web site: Glossary of Meteorology . trade winds . Glossary of Meteorology . American Meteorological Society . 2009 . 4 July 2021 .
  3. Web site: Glossary of Meteorology . westerlies . Glossary of Meteorology . American Meteorological Society . 2009 . 4 July 2021 .
  4. Web site: Glossary of Meteorology . roaring forties . Glossary of Meteorology . American Meteorological Society . 2009 . 4 July 2021 .
  5. Web site: Asti weather. weatherbase.com.
  6. Web site: Kujawy - najsuchsze miejsce w Polsce. S.A. Wirtualna Polska Media. 2016-02-02. turystyka.wp.pl. pl. 2020-01-31.
  7. Web site: UK Rainfall averages. https://web.archive.org/web/20100218235225/http://www.metoffice.gov.uk/climate/uk/averages/7100_1km/Rainfall_Average_1971-2000_17.gif. 2010-02-18.
  8. Web site: Spør meteorologen!. www.miljolare.no. 2019-05-07.
  9. Web site: Dataserier med normalvärden för perioden 1991-2020. Data series with normals for the period 1991-2020. sv. Swedish Meteorological and Hydrological Institute. 9 August 2022.
  10. Web site: Iberian Climatic Atlas . . 24 December 2020.
  11. News: John Metcalfe. The Wet and Slightly Less Wet Microclimates of Seattle. Bllomberg News. 14 October 2015.
  12. Web site: U.S. Climate Normals Quick Access – Station: Aberdeen, WA. National Oceanic and Atmospheric Administration. February 17, 2023. .
  13. News: How mountains influence rainfall patterns. 2008-02-29. USA Today. 2007-11-01.
  14. Web site: Glossary of Meteorology. 2009. Westerlies. American Meteorological Society. 2009-04-15. https://web.archive.org/web/20100622073904/http://amsglossary.allenpress.com/glossary/search?id=westerlies1. 2010-06-22.
  15. Web site: Climatology of the Interior Columbia River Basin. Sue Ferguson. 2001-09-07. Interior Columbia Basin Ecosystem Management Project. 2009-09-12. https://web.archive.org/web/20090515003307/http://www.icbemp.gov/science/ferguson_42.pdf. 2009-05-15.
  16. Book: An Introduction to Geology . Deserts . Chris Johnson . Matthew D. Affolter . Paul Inkenbrandt . Cam Mosher .
  17. Web site: Archived copy . 2015-03-16 . 2020-01-03 . https://web.archive.org/web/20200103030847/https://www.cocorahs.org/Media/docs/ClimateSum_VA.pdf .
  18. Web site: Precipitation Variability | Western North Carolina Vitality Index.
  19. Web site: Answer Man: Asheville a 'temperate rainforest' in wake of record rain?.
  20. Web site: Gorges State Park | NC State Parks.
  21. Web site: Canada's only desert is in B.C. But not where you think it is.
  22. https://www.willyweather.com.au/news/5291/rain+shadows.html Rain Shadows
  23. https://thenewdaily.com.au/weather/2020/05/28/bom-winter-weather-forecast-2020/ And the outlook for winter is … wet
  24. Book: Giambelluca. Tom. Sanderson . Marie . Prevailing Trade Winds: Climate and Weather in Hawaií. University of Hawaii Press. 1993. 62. 978-0-8248-1491-5.
  25. Bruniard . Enrique D. . 1982 . La diagonal árida Argentina: un límite climático real . es . Revista Geográfica . 5–20 .