In mathematics, the Rabinowitsch trick, introduced by,is a short way of proving the general case of the Hilbert Nullstellensatz from an easier special case (the so-called weak Nullstellensatz), by introducing an extra variable.
The Rabinowitsch trick goes as follows. Let K be an algebraically closed field. Suppose the polynomial f in K[''x''<sub>1</sub>,...''x''<sub>''n''</sub>] vanishes whenever all polynomials f1,....,fm vanish. Then the polynomials f1,....,fm, 1 - x0f have no common zeros (where we have introduced a new variable x0), so by the weak Nullstellensatz for K[''x''<sub>0</sub>, ..., ''x''<sub>''n''</sub>] they generate the unit ideal of K[''x''<sub>0</sub> ,..., ''x''<sub>''n''</sub>]. Spelt out, this means there are polynomials
g0,g1,...,gm\inK[x0,x1,...,xn]
1=g0(x0,x1,...,xn)(1-x0f(x1,...,xn))+
m | |
\sum | |
i=1 |
gi(x0,x1,...,xn)fi(x1,...,xn)
K[x0,x1,...,xn]
x0,x1,...,xn
x0=1/f(x1,...,xn)
1=
m | |
\sum | |
i=1 |
gi(1/f(x1,...,xn),x1,...,xn)fi(x1,...,xn)
K(x1,...,xn)
K[x1,...,xn]
1=
| ||||||||||||
|
h1,...,hm\inK[x1,...,xn]
f(x1,...,x
r | |
n) |
=
m | |
\sum | |
i=1 |
hi(x1,...,xn)fi(x1,...,xn),
fr