RAC1 explained

Ras-related C3 botulinum toxin substrate 1, is a protein that in humans is encoded by the RAC1 gene.[1] [2] This gene can produce a variety of alternatively spliced versions of the Rac1 protein, which appear to carry out different functions.[3]

Function

Rac1 is a small (~21 kDa) signalling G protein (more specifically a GTPase), and is a member of the Rac subfamily of the family Rho family of GTPases. Members of this superfamily appear to regulate a diverse array of cellular events, including the control of GLUT4[4] translocation to glucose uptake, cell growth, cytoskeletal reorganization, antimicrobial cytotoxicity,[5] and the activation of protein kinases.[6]

Rac1 is a pleiotropic regulator of many cellular processes, including the cell cycle, cell-cell adhesion, motility (through the actin network), and of epithelial differentiation (proposed to be necessary for maintaining epidermal stem cells).

Role in glucose transport

Rac1 is expressed in significant amounts in insulin sensitive tissues, such as adipose tissue and skeletal muscle. Here Rac1 regulated the translocation of glucose transporting GLUT4 vesicles from intracellular compartments to the plasma membrane.[7] [8] [9] In response to insulin, this allows for blood glucose to enter the cell to lower blood glucose. In conditions of obesity and type 2 diabetes, Rac1 signalling in skeletal muscle is dysfunctional, suggesting that Rac1 contributes to the progression of the disease.Rac1 protein is also necessary for glucose uptake in skeletal muscle activated by exercise[10] and muscle stretching.[11]

Clinical significance

Cancer

Along with other subfamily of Rac and Rho proteins, they exert an important regulatory role specifically in cell motility and cell growth. Rac1 has ubiquitous tissue expression, and drives cell motility by formation of lamellipodia.[12] In order for cancer cells to grow and invade local and distant tissues, deregulation of cell motility is one of the hallmark events in cancer cell invasion and metastasis.[13] Overexpression of a constitutively active Rac1 V12 in mice caused a tumour that is phenotypically indistinguishable from human Kaposi's sarcoma.[14] Activating or gain-of-function mutations of Rac1 are shown to play active roles in promoting mesenchymal-type of cell movement assisted by NEDD9 and DOCK3 protein complex.[15] Such abnormal cell motility may result in epithelial mesenchymal transition (EMT) – a driving mechanism for tumour metastasis as well as drug-resistant tumour relapse.[16] [17]

Activating mutations in Rac1 have been recently discovered in large-scale genomic studies involving melanoma[18] [19] [20] and non-small cell lung cancer.[21] As a result, Rac1 is considered a therapeutic target for many of these diseases.[22]

Other diseases

Dominant negative or constitutively active germline RAC1 mutations cause diverse phenotypes that have been grouped together as Mental Retardation Type 48.[23] Most mutations cause microcephaly while some specific changes appear to result in macrocephaly.

As a drug target

A few recent studies have also exploited targeted therapy to suppress tumour growth by pharmacological inhibition of Rac1 activity in metastatic melanoma and liver cancer as well as in human breast cancer.[24] [25] [26] For example, Rac1-dependent pathway inhibition resulted in the reversal of tumour cell phenotypes, suggesting Rac1 as a predictive marker and therapeutic target for trastuzumab-resistant breast cancer.[25] However, given Rac1's role in glucose transport, drugs that inhibit Rac1 could potentially be harmful to glucose homeostasis.

Interactions

RAC1 has been shown to interact with:

Further reading

External links

Notes and References

  1. Didsbury J, Weber RF, Bokoch GM, Evans T, Snyderman R . rac, a novel ras-related family of proteins that are botulinum toxin substrates . The Journal of Biological Chemistry . 264 . 28 . 16378–16382 . October 1989 . 2674130 . 10.1016/S0021-9258(19)84716-6 . free .
  2. Jordan P, Brazåo R, Boavida MG, Gespach C, Chastre E . Cloning of a novel human Rac1b splice variant with increased expression in colorectal tumors . Oncogene . 18 . 48 . 6835–6839 . November 1999 . 10597294 . 10.1038/sj.onc.1203233 . free .
  3. Zhou C, Licciulli S, Avila JL, Cho M, Troutman S, Jiang P, Kossenkov AV, Showe LC, Liu Q, Vachani A, Albelda SM, Kissil JL . The Rac1 splice form Rac1b promotes K-ras-induced lung tumorigenesis . Oncogene . 32 . 7 . 903–909 . February 2013 . 22430205 . 3384754 . 10.1038/onc.2012.99 .
  4. Sylow L, Nielsen IL, Kleinert M, Møller LL, Ploug T, Schjerling P, Bilan PJ, Klip A, Jensen TE, Richter EA . Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice . The Journal of Physiology . 594 . 17 . 4997–5008 . September 2016 . 27061726 . 5009787 . 10.1113/JP272039 .
  5. Xiang RF, Stack D, Huston SM, Li SS, Ogbomo H, Kyei SK, Mody CH . Ras-related C3 Botulinum Toxin Substrate (Rac) and Src Family Kinases (SFK) Are Proximal and Essential for Phosphatidylinositol 3-Kinase (PI3K) Activation in Natural Killer (NK) Cell-mediated Direct Cytotoxicity against Cryptococcus neoformans . The Journal of Biological Chemistry . 291 . 13 . 6912–6922 . March 2016 . 26867574 . 4807276 . 10.1074/jbc.M115.681544 . free .
  6. Ridley AJ . Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking . Trends in Cell Biology . 16 . 10 . 522–529 . October 2006 . 16949823 . 10.1016/j.tcb.2006.08.006 .
  7. Ueda S, Kitazawa S, Ishida K, Nishikawa Y, Matsui M, Matsumoto H, Aoki T, Nozaki S, Takeda T, Tamori Y, Aiba A, Kahn CR, Kataoka T, Satoh T . Crucial role of the small GTPase Rac1 in insulin-stimulated translocation of glucose transporter 4 to the mouse skeletal muscle sarcolemma . FASEB Journal . 24 . 7 . 2254–2261 . July 2010 . 20203090 . 4183928 . 10.1096/fj.09-137380 . free .
  8. Sylow L, Kleinert M, Pehmøller C, Prats C, Chiu TT, Klip A, Richter EA, Jensen TE . Akt and Rac1 signaling are jointly required for insulin-stimulated glucose uptake in skeletal muscle and downregulated in insulin resistance . Cellular Signalling . 26 . 2 . 323–331 . February 2014 . 24216610 . 10.1016/j.cellsig.2013.11.007 .
  9. Sylow L, Jensen TE, Kleinert M, Højlund K, Kiens B, Wojtaszewski J, Prats C, Schjerling P, Richter EA . Rac1 signaling is required for insulin-stimulated glucose uptake and is dysregulated in insulin-resistant murine and human skeletal muscle . Diabetes . 62 . 6 . 1865–1875 . June 2013 . 23423567 . 3661612 . 10.2337/db12-1148 .
  10. Sylow L, Jensen TE, Kleinert M, Mouatt JR, Maarbjerg SJ, Jeppesen J, Prats C, Chiu TT, Boguslavsky S, Klip A, Schjerling P, Richter EA . Rac1 is a novel regulator of contraction-stimulated glucose uptake in skeletal muscle . Diabetes . 62 . 4 . 1139–1151 . April 2013 . 23274900 . 3609592 . 10.2337/db12-0491 .
  11. Sylow L, Møller LL, Kleinert M, Richter EA, Jensen TE . Stretch-stimulated glucose transport in skeletal muscle is regulated by Rac1 . The Journal of Physiology . 593 . 3 . 645–656 . February 2015 . 25416624 . 4324711 . 10.1113/jphysiol.2014.284281 .
  12. Parri M, Chiarugi P . Rac and Rho GTPases in cancer cell motility control . Cell Communication and Signaling . 8 . 23 . 23 . September 2010 . 20822528 . 2941746 . 10.1186/1478-811x-8-23 . free .
  13. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation . Cell . 144 . 5 . 646–674 . March 2011 . 21376230 . 10.1016/j.cell.2011.02.013 . free .
  14. Ma Q, Cavallin LE, Yan B, Zhu S, Duran EM, Wang H, Hale LP, Dong C, Cesarman E, Mesri EA, Goldschmidt-Clermont PJ . Antitumorigenesis of antioxidants in a transgenic Rac1 model of Kaposi's sarcoma . Proceedings of the National Academy of Sciences of the United States of America . 106 . 21 . 8683–8688 . May 2009 . 19429708 . 2679580 . 10.1073/pnas.0812688106 . free . 2009PNAS..106.8683M .
  15. Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S, Sahai E, Marshall CJ . Rac activation and inactivation control plasticity of tumor cell movement . Cell . 135 . 3 . 510–523 . October 2008 . 18984162 . 10.1016/j.cell.2008.09.043 . 5745856 . free .
  16. Stallings-Mann ML, Waldmann J, Zhang Y, Miller E, Gauthier ML, Visscher DW, Downey GP, Radisky ES, Fields AP, Radisky DC . Matrix metalloproteinase induction of Rac1b, a key effector of lung cancer progression . Science Translational Medicine . 4 . 142 . 142ra95 . July 2012 . 22786680 . 3733503 . 10.1126/scitranslmed.3004062 .
  17. Yang WH, Lan HY, Huang CH, Tai SK, Tzeng CH, Kao SY, Wu KJ, Hung MC, Yang MH . RAC1 activation mediates Twist1-induced cancer cell migration . Nature Cell Biology . 14 . 4 . 366–374 . March 2012 . 22407364 . 10.1038/ncb2455 . 4755216 .
  18. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP, Nickerson E, Auclair D, Li L, Place C, Dicara D, Ramos AH, Lawrence MS, Cibulskis K, Sivachenko A, Voet D, Saksena G, Stransky N, Onofrio RC, Winckler W, Ardlie K, Wagle N, Wargo J, Chong K, Morton DL, Stemke-Hale K, Chen G, Noble M, Meyerson M, Ladbury JE, Davies MA, Gershenwald JE, Wagner SN, Hoon DS, Schadendorf D, Lander ES, Gabriel SB, Getz G, Garraway LA, Chin L . A landscape of driver mutations in melanoma . Cell . 150 . 2 . 251–263 . July 2012 . 22817889 . 3600117 . 10.1016/j.cell.2012.06.024 .
  19. Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP, Cheng E, Davis MJ, Goh G, Choi M, Ariyan S, Narayan D, Dutton-Regester K, Capatana A, Holman EC, Bosenberg M, Sznol M, Kluger HM, Brash DE, Stern DF, Materin MA, Lo RS, Mane S, Ma S, Kidd KK, Hayward NK, Lifton RP, Schlessinger J, Boggon TJ, Halaban R . Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma . Nature Genetics . 44 . 9 . 1006–1014 . September 2012 . 22842228 . 3432702 . 10.1038/ng.2359 .
  20. Bauer NN, Chen YW, Samant RS, Shevde LA, Fodstad O . Rac1 activity regulates proliferation of aggressive metastatic melanoma . Experimental Cell Research . 313 . 18 . 3832–3839 . November 2007 . 17904119 . 10.1016/j.yexcr.2007.08.017 .
  21. Stallings-Mann ML, Waldmann J, Zhang Y, Miller E, Gauthier ML, Visscher DW, Downey GP, Radisky ES, Fields AP, Radisky DC . Matrix metalloproteinase induction of Rac1b, a key effector of lung cancer progression . Science Translational Medicine . 4 . 142 . 142ra95 . July 2012 . 22786680 . 3733503 . 10.1126/scitranslmed.3004062 .
  22. McAllister SS . Got a light? Illuminating lung cancer . Science Translational Medicine . 4 . 142 . 142fs22 . July 2012 . 22786678 . 10.1126/scitranslmed.3004446 . 12093516 .
  23. Reijnders MR, Ansor NM, Kousi M, Yue WW, Tan PL, Clarkson K, Clayton-Smith J, Corning K, Jones JR, Lam WW, Mancini GM, Marcelis C, Mohammed S, Pfundt R, Roifman M, Cohn R, Chitayat D, Millard TH, Katsanis N, Brunner HG, Banka S . RAC1 Missense Mutations in Developmental Disorders with Diverse Phenotypes . American Journal of Human Genetics . 101 . 3 . 466–477 . September 2017 . 28886345 . 5591022 . 10.1016/j.ajhg.2017.08.007 .
  24. Chen QY, Xu LQ, Jiao DM, Yao QH, Wang YY, Hu HZ, Wu YQ, Song J, Yan J, Wu LJ . Silencing of Rac1 modifies lung cancer cell migration, invasion and actin cytoskeleton rearrangements and enhances chemosensitivity to antitumor drugs . International Journal of Molecular Medicine . 28 . 5 . 769–776 . November 2011 . 21837360 . 10.3892/ijmm.2011.775 . free .
  25. Dokmanovic M, Hirsch DS, Shen Y, Wu WJ . Rac1 contributes to trastuzumab resistance of breast cancer cells: Rac1 as a potential therapeutic target for the treatment of trastuzumab-resistant breast cancer . Molecular Cancer Therapeutics . 8 . 6 . 1557–1569 . June 2009 . 19509242 . 10.1158/1535-7163.mct-09-0140 . free .
  26. Liu S, Yu M, He Y, Xiao L, Wang F, Song C, Sun S, Ling C, Xu Z . Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway . Hepatology . 47 . 6 . 1964–1973 . June 2008 . 18506888 . 10.1002/hep.22240 . 21106205 . free .
  27. Shin OH, Exton JH . Differential binding of arfaptin 2/POR1 to ADP-ribosylation factors and Rac1 . Biochemical and Biophysical Research Communications . 285 . 5 . 1267–1273 . August 2001 . 11478794 . 10.1006/bbrc.2001.5330 .
  28. Van Aelst L, Joneson T, Bar-Sagi D . Identification of a novel Rac1-interacting protein involved in membrane ruffling . The EMBO Journal . 15 . 15 . 3778–3786 . August 1996 . 8670882 . 452058 . 10.1002/j.1460-2075.1996.tb00751.x .
  29. Tarricone C, Xiao B, Justin N, Walker PA, Rittinger K, Gamblin SJ, Smerdon SJ . The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways . Nature . 411 . 6834 . 215–219 . May 2001 . 11346801 . 10.1038/35075620 . 4324211 .
  30. Ewing RM, Chu P, Elisma F, Li H, Taylor P, Climie S, McBroom-Cerajewski L, Robinson MD, O'Connor L, Li M, Taylor R, Dharsee M, Ho Y, Heilbut A, Moore L, Zhang S, Ornatsky O, Bukhman YV, Ethier M, Sheng Y, Vasilescu J, Abu-Farha M, Lambert JP, Duewel HS, Stewart II, Kuehl B, Hogue K, Colwill K, Gladwish K, Muskat B, Kinach R, Adams SL, Moran MF, Morin GB, Topaloglou T, Figeys D . Large-scale mapping of human protein-protein interactions by mass spectrometry . Molecular Systems Biology . 3 . 1 . 89 . 2007 . 17353931 . 1847948 . 10.1038/msb4100134 .
  31. Grizot S, Fauré J, Fieschi F, Vignais PV, Dagher MC, Pebay-Peyroula E . Crystal structure of the Rac1-RhoGDI complex involved in nadph oxidase activation . Biochemistry . 40 . 34 . 10007–10013 . August 2001 . 11513578 . 10.1021/bi010288k .
  32. Lian LY, Barsukov I, Golovanov AP, Hawkins DI, Badii R, Sze KH, Keep NH, Bokoch GM, Roberts GC . Mapping the binding site for the GTP-binding protein Rac-1 on its inhibitor RhoGDI-1 . Structure . 8 . 1 . 47–55 . January 2000 . 10673424 . 10.1016/S0969-2126(00)00080-0 . free .
  33. Gorvel JP, Chang TC, Boretto J, Azuma T, Chavrier P . Differential properties of D4/LyGDI versus RhoGDI: phosphorylation and rho GTPase selectivity . FEBS Letters . 422 . 2 . 269–273 . January 1998 . 9490022 . 10.1016/S0014-5793(98)00020-9 . 10817327 .
  34. Di-Poï N, Fauré J, Grizot S, Molnár G, Pick E, Dagher MC . Mechanism of NADPH oxidase activation by the Rac/Rho-GDI complex . Biochemistry . 40 . 34 . 10014–10022 . August 2001 . 11513579 . 10.1021/bi010289c .
  35. Fauré J, Dagher MC . Interactions between Rho GTPases and Rho GDP dissociation inhibitor (Rho-GDI) . Biochimie . 83 . 5 . 409–414 . May 2001 . 11368848 . 10.1016/S0300-9084(01)01263-9 .
  36. Miki H, Yamaguchi H, Suetsugu S, Takenawa T . IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling . Nature . 408 . 6813 . 732–735 . December 2000 . 11130076 . 10.1038/35047107 . 4426046 . 2000Natur.408..732M .
  37. Westendorf JJ . The formin/diaphanous-related protein, FHOS, interacts with Rac1 and activates transcription from the serum response element . The Journal of Biological Chemistry . 276 . 49 . 46453–46459 . December 2001 . 11590143 . 10.1074/jbc.M105162200 . free .
  38. Yayoshi-Yamamoto S, Taniuchi I, Watanabe T . FRL, a novel formin-related protein, binds to Rac and regulates cell motility and survival of macrophages . Molecular and Cellular Biology . 20 . 18 . 6872–6881 . September 2000 . 10958683 . 86228 . 10.1128/MCB.20.18.6872-6881.2000 .
  39. Kuroda S, Fukata M, Kobayashi K, Nakafuku M, Nomura N, Iwamatsu A, Kaibuchi K . Identification of IQGAP as a putative target for the small GTPases, Cdc42 and Rac1 . The Journal of Biological Chemistry . 271 . 38 . 23363–23367 . September 1996 . 8798539 . 10.1074/jbc.271.38.23363 . free .
  40. Fukata M, Watanabe T, Noritake J, Nakagawa M, Yamaga M, Kuroda S, Matsuura Y, Iwamatsu A, Perez F, Kaibuchi K . Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170 . Cell . 109 . 7 . 873–885 . June 2002 . 12110184 . 10.1016/S0092-8674(02)00800-0 . 15158637 . free .
  41. Hart MJ, Callow MG, Souza B, Polakis P . IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs . The EMBO Journal . 15 . 12 . 2997–3005 . June 1996 . 8670801 . 450241 . 10.1002/j.1460-2075.1996.tb00663.x .
  42. Brill S, Li S, Lyman CW, Church DM, Wasmuth JJ, Weissbach L, Bernards A, Snijders AJ . The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases . Molecular and Cellular Biology . 16 . 9 . 4869–4878 . September 1996 . 8756646 . 231489 . 10.1128/mcb.16.9.4869 .
  43. Jefferies C, Bowie A, Brady G, Cooke EL, Li X, O'Neill LA . Transactivation by the p65 subunit of NF-kappaB in response to interleukin-1 (IL-1) involves MyD88, IL-1 receptor-associated kinase 1, TRAF-6, and Rac1 . Molecular and Cellular Biology . 21 . 14 . 4544–4552 . July 2001 . 11416133 . 87113 . 10.1128/MCB.21.14.4544-4552.2001 .
  44. Shimizu M, Wang W, Walch ET, Dunne PW, Epstein HF . Rac-1 and Raf-1 kinases, components of distinct signaling pathways, activate myotonic dystrophy protein kinase . FEBS Letters . 475 . 3 . 273–277 . June 2000 . 10869570 . 10.1016/S0014-5793(00)01692-6 . 46238883 . free .
  45. Kitamura Y, Kitamura T, Sakaue H, Maeda T, Ueno H, Nishio S, Ohno S, Osada S, Sakaue M, Ogawa W, Kasuga M . Interaction of Nck-associated protein 1 with activated GTP-binding protein Rac . The Biochemical Journal . 322 . Pt 3 . 873–878 . March 1997 . 9148763 . 1218269 . 10.1042/bj3220873 .
  46. Zhang B, Chernoff J, Zheng Y . Interaction of Rac1 with GTPase-activating proteins and putative effectors. A comparison with Cdc42 and RhoA . The Journal of Biological Chemistry . 273 . 15 . 8776–8782 . April 1998 . 9535855 . 10.1074/jbc.273.15.8776 . free .
  47. Katoh H, Negishi M . RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo . Nature . 424 . 6947 . 461–464 . July 2003 . 12879077 . 10.1038/nature01817 . 4411133 . 2003Natur.424..461K .
  48. Seoh ML, Ng CH, Yong J, Lim L, Leung T . ArhGAP15, a novel human RacGAP protein with GTPase binding property . FEBS Letters . 539 . 1–3 . 131–137 . March 2003 . 12650940 . 10.1016/S0014-5793(03)00213-8 . 27574424 . free .
  49. Qiu RG, Abo A, Steven Martin G . A human homolog of the C. elegans polarity determinant Par-6 links Rac and Cdc42 to PKCzeta signaling and cell transformation . Current Biology . 10 . 12 . 697–707 . June 2000 . 10873802 . 10.1016/S0960-9822(00)00535-2 . 14825707 . free . 2000CBio...10..697Q .
  50. Noda Y, Takeya R, Ohno S, Naito S, Ito T, Sumimoto H . Human homologues of the Caenorhabditis elegans cell polarity protein PAR6 as an adaptor that links the small GTPases Rac and Cdc42 to atypical protein kinase C . Genes to Cells . 6 . 2 . 107–119 . February 2001 . 11260256 . 10.1046/j.1365-2443.2001.00404.x . 8789941 . free .
  51. Zhao C, Ma H, Bossy-Wetzel E, Lipton SA, Zhang Z, Feng GS . GC-GAP, a Rho family GTPase-activating protein that interacts with signaling adapters Gab1 and Gab2 . The Journal of Biological Chemistry . 278 . 36 . 34641–34653 . September 2003 . 12819203 . 10.1074/jbc.M304594200 . free .
  52. Moon SY, Zang H, Zheng Y . Characterization of a brain-specific Rho GTPase-activating protein, p200RhoGAP . The Journal of Biological Chemistry . 278 . 6 . 4151–4159 . February 2003 . 12454018 . 10.1074/jbc.M207789200 . free .
  53. Simon AR, Vikis HG, Stewart S, Fanburg BL, Cochran BH, Guan KL . Regulation of STAT3 by direct binding to the Rac1 GTPase . Science . 290 . 5489 . 144–147 . October 2000 . 11021801 . 10.1126/science.290.5489.144 . 2000Sci...290..144S .
  54. Worthylake DK, Rossman KL, Sondek J . Crystal structure of Rac1 in complex with the guanine nucleotide exchange region of Tiam1 . Nature . 408 . 6813 . 682–688 . December 2000 . 11130063 . 10.1038/35047014 . 4429919 . 2000Natur.408..682W .
  55. Gao Y, Xing J, Streuli M, Leto TL, Zheng Y . Trp(56) of rac1 specifies interaction with a subset of guanine nucleotide exchange factors . The Journal of Biological Chemistry . 276 . 50 . 47530–47541 . December 2001 . 11595749 . 10.1074/jbc.M108865200 . free .