Sheaf on an algebraic stack explained
is a generalization of a
quasi-coherent sheaf on a scheme. The most concrete description is that it is a data that consists of, for each a scheme
S in the base category and
in
, a quasi-coherent sheaf
on
S together with maps implementing the compatibility conditions among
's.
For a Deligne–Mumford stack, there is a simpler description in terms of a presentation
: a quasi-coherent sheaf on
is one obtained by
descending a quasi-coherent sheaf on
U. A quasi-coherent sheaf on a
Deligne–Mumford stack generalizes an orbibundle (in a sense).
Constructible sheaves (e.g., as ℓ-adic sheaves) can also be defined on an algebraic stack and they appear as coefficients of cohomology of a stack.
Definition
The following definition is
Let
be a
category fibered in
groupoids over the category of schemes of finite type over a field with the structure functor
p. Then a quasi-coherent sheaf on
is the data consisting of:
- for each object
, a quasi-coherent sheaf
on the scheme
,
- for each morphism
in
and
in the base category, an isomorphism
\rhoH:
)\overset{\simeq}\toF\xi
satisfying the cocycle condition: for each pair
H1:\xi1\to\xi2,H2:\xi2\to\xi3
,
}\to F_ equals
}\to F_.(cf.
equivariant sheaf.)
Examples
ℓ-adic formalism
The ℓ-adic formalism (theory of ℓ-adic sheaves) extends to algebraic stacks.
See also
- Hopf algebroid - encodes the data of quasi-coherent sheaves on a prestack presentable as a groupoid internal to affine schemes (or projective schemes using graded Hopf algebroids)
References
- Book: 10.1007/978-3-540-69392-5. Geometry of algebraic curves. Vol. II, with a contribution by Joseph Daniel Harris . Grundlehren der mathematischen Wissenschaften . 2011 . 268 . 978-3-540-42688-2. Arbarello . Enrico . Griffiths . Phillip. 2807457. .
- 10.1090/memo/0774. Derived -adic categories for algebraic stacks . 2003 . Behrend . Kai A. . Memoirs of the American Mathematical Society . 163 . 774 . free .
- Book: Laumon . Gérard . Gérard Laumon. Moret-Bailly . Laurent . Champs algébriques . . Berlin, New York . Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics . 978-3-540-65761-3 . 1771927 . 2000 . 39. 10.1007/978-3-540-24899-6.
- 10.1515/CRELLE.2007.012. Sheaves on Artin stacks . 2007 . Olsson . Martin . Journal für die reine und angewandte Mathematik (Crelle's Journal) . 2007 . 603 . 15445962. 55–112 . Editorial note: This paper corrects a mistake in Laumon and Moret-Bailly's Champs algébriques.
- 10.1093/imrn/rnv142. Approximation of Sheaves on Algebraic Stacks . 2016 . Rydh . David . International Mathematics Research Notices . 2016 . 3 . 717–737. 1408.6698 .
External links
- https://mathoverflow.net/questions/69035/the-category-of-l-adic-sheaves
- http://math.stanford.edu/~conrad/Weil2seminar/Notes/L16.pdf Adic Formalism, Part 2 Brian Lawrence March 1, 2017