Quantum register explained
In quantum computing, a quantum register is a system comprising multiple qubits.[1] It is the quantum analogue of the classical processor register. Quantum computers perform calculations by manipulating qubits within a quantum register.[2]
Definition
It is usually assumed that the register consists of qubits. It is also generally assumed that registers are not density matrices, but that they are pure, although the definition of "register" can be extended to density matrices.
An
size quantum register is a quantum system comprising
pure qubits.
The Hilbert space,
, in which the data is stored in a quantum register is given by
}\otimes\mathcal\otimes\ldots\otimes\mathcal where
is the
tensor product.
[3] The number of dimensions of the Hilbert spaces depends on what kind of quantum systems the register is composed of. Qubits are 2-dimensional complex spaces (
), while
qutrits are 3-dimensional complex spaces (
), etc. For a register composed of
N number of
d-dimensional (or
d-
level) quantum systems we have the Hilbert space
l{H}=(Cd) ⊗ =\underbrace{Cd ⊗ Cd ⊗ ... ⊗ Cd}Ntimes\cong
.
The registers quantum state can in the bra-ket notation be written
|\psi\rangle=
ak|k\rangle=a0|0\rangle+a1|1\rangle+...+
|dN-1\rangle.
The values
are
probability amplitudes. Because of the
Born rule and the 2nd axiom of probability theory,
so the possible
state space of the register is the surface of the
unit sphere in
Examples:
- The quantum state vector of a 5-qubit register is a unit vector in
- A register of four qutrits similarly is a unit vector in
Quantum vs. classical register
First, there's a conceptual difference between the quantum and classical register.An
size classical register refers to an array of
flip flops. An
size quantum register is merely a collection of
qubits.
Moreover, while an
size classical register is able to store a single value of the
possibilities spanned by
classical pure bits, a quantum register is able to store all
possibilities spanned by quantum pure qubits at the same time.
For example, consider a 2-bit-wide register. A classical register is able to store only one of the possible values represented by 2 bits -
accordingly.
If we consider 2 pure qubits in superpositions
and
, using the quantum register definition
|a\rangle=|a0\rangle ⊗ |a1\rangle=
(|00\rangle-|01\rangle+|10\rangle-|11\rangle)
it follows that it is capable of storing all the possible values (by having non-zero probability amplitude for all outcomes) spanned by two qubits simultaneously.
See also
Further reading
- Book: Arora . Sanjeev. Sanjeev Arora . Barak . Boaz. Boaz Barak . Computational Complexity: A Modern Approach . 2016 . Cambridge University Press . 978-0-521-42426-4 . 201–236.
Notes and References
- Book: Ekert . Artur . Hayden . Patrick . Inamori . Hitoshi . 2008 . Coherent atomic matter waves . Basic Concepts in Quantum Computation . Les Houches - Ecole d'Ete de Physique Theorique . 72 . 661–701 . 10.1007/3-540-45338-5_10 . quant-ph/0011013. 978-3-540-41047-8 . 53402188 .
- Ömer . Bernhard . 2000-01-20 . Quantum Programming in QCL . 2021-05-24 . 52.
- Book: Major. Günther W., V.N. Gheorghe, F.G.. Charged particle traps II : applications. 2009. Springer. Berlin. 978-3540922605. 220.