Quantum dilogarithm explained
In mathematics, the quantum dilogarithm is a special function defined by the formula
\phi(x)\equiv(x;q)infty=\prod
(1-xqn), |q|<1
It is the same as the q-exponential function
.
Let
be "
q-commuting variables", that is elements of a suitable noncommutative algebra satisfying Weyl's relation
. Then, the quantum dilogarithm satisfies Schützenberger's identity
\phi(u)\phi(v)=\phi(u+v),
Faddeev-Volkov's identity
\phi(v)\phi(u)=\phi(u+v-vu),
and Faddeev-Kashaev's identity
\phi(v)\phi(u)=\phi(u)\phi(-vu)\phi(v).
The latter is known to be a quantum generalization of Rogers' five term dilogarithm identity.
Faddeev's quantum dilogarithm
is defined by the following formula:
\int | |
| C
| e-2i | \sinh(wb)\sinh(w/b) |
|
\right),
where the contour of integration
goes along the real axis outside a small neighborhood of the origin and deviates into the
upper half-plane near the origin. The same function can be described by the integral formula of Woronowicz:
Ludvig Faddeev discovered the quantum pentagon identity:
\Phib(\hatp)\Phib(\hatq)
=
\Phib(\hatq)
\Phib(\hatp+\hatq)
\Phib(\hatp),
where
and
are
self-adjoint (normalized) quantum mechanical momentum and position operators satisfying Heisenberg's commutation relation
and the inversion relation
\Phib(x)\Phib(-x)=\Phi
,
| | \pii | \left(b2+b-2\right) | 24 |
|
\Phi | |
| b(0)=e |
.
The quantum dilogarithm finds applications in mathematical physics, quantum topology, cluster algebra theory.
The precise relationship between the q-exponential and
is expressed by the equality
valid for
.
References
- Faddeev . L. D. . 1994 . Current-Like Variables in Massive and Massless Integrable Models . hep-th/9408041.
- Faddeev . L. D. . 1995 . . Discrete Heisenberg-Weyl group and modular group . 34 . 3 . 249–254 . hep-th/9504111 . 1995LMaPh..34..249F . 10.1007/BF01872779 . 1345554. 119435070 .
- Faddeev . L. D. . Kashaev . R. M. . 1994 . Quantum dilogarithm . . 9 . 5 . 427–434 . hep-th/9310070 . 1994MPLA....9..427F . 10.1142/S0217732394000447 . 1264393. 6172445 .
- Faddeev . L. D. . Volkov. A. Yu. . 1993 . Abelian current algebra and the Virasoro algebra on the lattice . . 315 . 3–4 . 311–318 . hep-th/9307048 . 1993PhLB..315..311F . 10.1016/0370-2693(93)91618-W. 10294434 .
- Kirillov . A. N. . 1995 . Dilogarithm identities . . 118 . 61–142 . hep-th/9408113 . 1995PThPS.118...61K . 10.1143/PTPS.118.61 . 1356515. 119177149 .
- Schützenberger . M. P. . 1953 . Une interprétation de certaines solutions de l'équation fonctionnelle: F (x + y) = F (x)F (y) . . 236 . 352–353.
- Woronowicz . S. L.. 2000. Quantum exponential function. Reviews in Mathematical Physics. 12 . 6 . 873–920. 10.1142/S0129055X00000344. 1770545. 2000RvMaP..12..873W .