Quadratic integral explained

In mathematics, a quadratic integral is an integral of the form\int \frac.

It can be evaluated by completing the square in the denominator.

\int \frac = \frac \int \frac.

Positive-discriminant case

Assume that the discriminant q = b2 − 4ac is positive. In that case, define u and A byu = x + \frac,and-A^2 = \frac - \frac = \frac(4ac - b^2).

The quadratic integral can now be written as\int \frac = \frac \int \frac = \frac \int \frac.

The partial fraction decomposition\frac = \frac\!\left(\frac - \frac \right) allows us to evaluate the integral:\frac \int \frac = \frac \ln \left(\frac \right) + \text.

The final result for the original integral, under the assumption that q > 0, is\int \frac = \frac \ln \left(\frac \right) + \text.

Negative-discriminant case

In case the discriminant q = b2 − 4ac is negative, the second term in the denominator in\int \frac = \frac \int \frac.is positive. Then the integral becomes\begin \frac \int \frac & = \frac \int \frac \\[9pt]& = \frac \int \frac \\[9pt]& = \frac \arctan(w) + \mathrm \\[9pt]& = \frac \arctan\left(\frac\right) + \text \\[9pt]& = \frac \arctan \left(\frac\right) + \text \\[9pt]& = \frac \arctan\left(\frac\right) + \text.\end

References