f
X → Y
f*:Hn\left(X\right) → Hn\left(Y\right)
n\geq0
Homology is a functor which converts a topological space
X
Hn\left(X\right)
H*\left(X\right)
We build the pushforward homomorphism as follows (for singular or simplicial homology):
Cn\left(X\right)
Cn\left(Y\right)
\sigmaX
\Deltan → X
f
Y
f\#\left(\sigmaX\right)=f\sigmaX
\Deltan → Y
f\#
f\#\left(\sumtnt\sigmat\right)=\sumtntf\#\left(\sigmat\right)
The maps
f\#
Cn\left(X\right) → Cn\left(Y\right)
f\#\partial=\partialf\#
\partial
\partialf\#
We have that
f\#
\partial\alpha=0
\partialf\#\left(\alpha\right)=f\#\left(\partial\alpha\right)=0
f\#
f\#\left(\partial\beta\right)=\partialf\#\left(\beta\right)
Hence
f\#
f*:Hn\left(X\right) → Hn\left(Y\right)
n\geq0
Two basic properties of the push-forward are:
\left(f\circg\right)*=f*\circg*
X\overset{g}{ → }Y\overset{f}{ → }Z
\left(idX\right)*=id
idX
X → X
X
id\colonHn\left(X\right) → Hn\left(X\right)
A main result about the push-forward is the homotopy invariance: if two maps
f,g\colonX → Y
f*=g*\colonHn\left(X\right) → Hn\left(Y\right)
This immediately implies that the homology groups of homotopy equivalent spaces are isomorphic:
The maps
f*\colonHn\left(X\right) → Hn\left(Y\right)
f\colonX → Y
n