Protein aggregation predictors explained

Computational methods that use protein sequence and/ or protein structure to predict protein aggregation. The table below, shows the main features of software for prediction of protein aggregation

Table

Method! rowspan="2"
Last UpdateAccess (Web server/downloadable)PrincipleInputOutput
Sequence / 3D StructureAdditional parameters
Amyloidogenic Patten[1] 2004Web Server- AMYLPRED2Secondary structure-relatedAmyloidogenic pattern

Submissions are scanned for the existence of this pattern --[VLSCWFNQE]-[ILTYWFNE]-[FIY]- at identity level, with the use of a simple custom script.

sequence-Amyloidogenic regions
Tango [2] [3] [4] 2004Web Server-TANGOPhenomenologicalBased on physico-chemical principles of secondary structure formation extended by the assumption that the core regions of an aggregate are fully buried.sequencepH/ionic strengthOverall aggregation and amyloidoidogenic regions
Average Packing Density[5] 2006Web Server-AMYLPRED2Secondary structure-relatedRelates average packing density of residues to the formation of amyloid fibrils.sequence-Amyloidogenic regions
Beta-strand contiguity[6] 2007Web Server- AMYLPRED2PhenomenologicalPrediction of B-strand propensity score to locate in the amyloid fibril. sequence-beta-strand formation
Hexapeptide Conformational Energy /Pre-amyl[7] 2007Web Server- AMYLPRED2Secondary structure-relatedHexapeptides of a submitted protein are threaded onto over 2500 templates of microcrystallic structure of NNQQNY, energy values below -27.00 are considered as hits.sequence-Amyloidogenic regions and energy
AGGRESCAN[8] 2007Web Servers -AMLYPRED2 & AGGRESCANPhenomenologicalPrediction of 'aggregation-prone' in protein sequences, based on an aggregation propensity scale for natural amino acids derived from in vivo experiments.sequence-Overall aggregation and amyloidogenic regions
Salsa[9] 2007Web server - AMYPdb[10] PhenomenologicalPrediction of the aggregation propensities single or multiple sequences based on physicochemical properties.sequencehot spot lengthAmyloidogenic regions
Pafig[11] 2009Web server- AMYLPRED2DownloadPhenomenologicalIdentification of Hexapeptides associated to amyloid fibrillar aggregates.sequence-Amyloidogenic regions
Net-CSSP[12] [13] [14] [15] 2020Web Server - Net-CSSPAMYLPRED2Secondary structure-relatedQuantification of the influence of the tertiary interation on secondary structural preference.sequence/pdbsingle/dual network-thresholdAmyloidogenic propensity regions
Betascan[16] 2009Web Server - BetascanDownload - Betascan Secondary structure-relatedPredict the probability that particular portions of a protein will form amyloid.sequencelengthAmyloidogenic regions
FoldAmyloid[17] 2010Web Server - FoldAmyloidSecondary structure-relatedPrediction of amyloid regions using expected probability of hydrogen bonds formation and packing densitites of residues.sequencescale, threshold, averaging frameAmyloidogenic regions
Waltz[18] [19] 2010Web Server - Waltz & AMYLPRED2Secondary structure-relatedApplication of position-specific substitution matrices (PSSM) obtained from amyloidogenic peptides.sequencepH, specificity, sensitivityAmyloidogenic regions
Zipper DB [20] [21] [22] [23] 2010Web Server- Zipper DBSecondary structure-relatedStructure based prediction of fribrillation propoensities, using crystal strucutrue of the fibril forming peptide NNQQNY from the sup 35 prion protein of Saccharomyces cerevisiae. sequence-Amyloidogenic regions and, energy and beta-sheet conformation
STITCHER[24] 2012Web Server - Stitcher (currently offline)Secondary structure-relatedsequence-Amyloidogenic regions
MetAmyl[25] [26] [27] [28] 2013Web Server - MetAmylConsensus methodAmyloidogenic patterns, average packing density, beta-strand contiguity, pafig, Net-CSSP, STITCHERsequencethresholdOverall generic and amyloidogenic regions based on the consensus
AmylPred2[29] 2013Web Server - AMYLPRED2Consensus methodAmyloidogenic patterns, average packing density, beta-strand contiguity, pafig, Net-CSSP, STITCHERsequence-Overall generic and amyloidogenic regions based on the consensus
PASTA 2.0[30] 2014Web Server - PASTA 2.0Secondary structure-relatedPredicts the most aggregation-prone portions and the corresponding β-strand inter-molecular pairing for multiple input sequences.sequencetop pairings and energies, mutations and protein-proteinAmyloidogenic regions, energy, and beta-sheet orientation in aggregates
FISH Amyloid[31] 2014Web Server - Comprec (currently offline)Secondary structure-relatedsequencethresholdAmyloidogenic regions
GAP[32] [33] [34] 2014Web Server - GAPSecondary structure-relatedIdentification of amyloid forming peptides and amorphous peptides using a dataset of 139 amyloids and 168 amorphous peptides.sequence-Overall aggregation and amyloidogenic regions
APPNN[35] 2015Download - CRANPhenomenologicalAmyloidogenicity propensity predictor based on a machine learning approach through recursive feature selection and feed-forward neural networks, taking advantage of newly published sequences with experimental, in vitro, evidence of amyloid formation.sequence-Amyloidogenic regions
ArchCandy[36] 2015Download- BiSMMSecondary structure-relatedBased on an assumption that protein sequences that are able to form β-arcades are amyloidogenic.sequence-Amyloidogenic regions
Amyload[37] 2015Web Server - Comprec (currently offline) Consensus methodsequence-Overall generic and amyloidogenic regions
SolubiS[38] [39] 2016Web Server - SolubiS3D structurepdb filechain, threshold, gatekeeperAggregation propensity and stability vs mutations
CamSol Structurally Corrected[40] [41] 2017Web Server - Chemistry of Health3D structurepdb filepH, patch radiusExposed aggregation-prone patches and mutated variants design
CamSol intrinsic[42] [43] 2017Web Server- Chemistry of HealthPhenomenologicalSequence-based method of predicting protein solubility and generic aggregation propensity.sequencepHCalculation of the overall intrinsic solubility score and solubility profile
AmyloGram[44] 2017Web Server - AmyloGramPhenomenologicalAmyloGram predicts amyloid proteins using n-gram encoding and random forests.sequence-Overall aggregation and amyloidogenic regions
BetaSerpentine[45] 2017Web Server - BetaSerpentine-1.0Sequence-relatedReconstruction of amyloid structures containing adjacent β-arches.sequence-Amyloidogenic regions
AggScore[46] 2018AggScore is available through Schrödinger's BioLuminate Suite as of software release 2018-1. Secondary structure-relatedMethod that uses the distribution of hydrophobic and electrostatic patches on the surface of the protein, factoring in the intensity and relative orientation of the respective surface patches into an aggregation propensity function that has been trained on a benchmark set of 31 adnectin proteins.sequence-Amyloidogenic regions
AggreRATE-Pred[47] 2018Web Server - AggreRAE-PredSecondary structure-relatedPredict changes in aggregation rate upon point mutationssequence pdbmutations
AGGRESCAN 3D 2.0[48] [49] [50] [51] [52] 2019Web Server - Aggrescan3D3D structurepdb filedynamic mode, mutations, patch radius, stability, enhance solubilityDynamic exposed aggregation-prone patches and mutated variants design
Budapest amyloid predictor[53] 2021Web Server - Budapest amyloid predictorHexapeptidesequenceAmyloidgenecity of hexapeptide
ANuPP[54] 2021Web Server - ANuPPHexapeptide and SequenceIdentification amyloid-fibril forming peptides and regions in protein sequencessequenceAmyloidogenic hexapeptides and aggregation prone regions

See also

PhasAGE toolbox

Amyloid

Protein aggregation

References

  1. Paz. Manuela López de la. Serrano. Luis. 2004-01-06. Sequence determinants of amyloid fibril formation. Proceedings of the National Academy of Sciences. en. 101. 1. 87–92. 10.1073/pnas.2634884100. 0027-8424. 314143. 14691246. 2004PNAS..101...87L. free.
  2. Rousseau. F. Schymkowitz. J. Serrano. L. February 2006. Protein aggregation and amyloidosis: confusion of the kinds?. Current Opinion in Structural Biology. en. 16. 1. 118–126. 10.1016/j.sbi.2006.01.011. 16434184.
  3. Fernandez-Escamilla. Ana-Maria. Rousseau. Frederic. Schymkowitz. Joost. Serrano. Luis. October 2004. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nature Biotechnology. en. 22. 10. 1302–1306. 10.1038/nbt1012. 15361882. 41481025. 1087-0156.
  4. Linding. Rune. Schymkowitz. Joost. Rousseau. Frederic. Diella. Francesca. Serrano. Luis. September 2004. A Comparative Study of the Relationship Between Protein Structure and β-Aggregation in Globular and Intrinsically Disordered Proteins. Journal of Molecular Biology. en. 342. 1. 345–353. 10.1016/j.jmb.2004.06.088. 15313629.
  5. Galzitskaya. Oxana V.. Garbuzynskiy. Sergiy O.. Lobanov. Michail Yurievich. 2006-12-29. Prediction of Amyloidogenic and Disordered Regions in Protein Chains. PLOS Computational Biology. en. 2. 12. e177. 10.1371/journal.pcbi.0020177. 1553-7358. 1761655. 17196033. 2006PLSCB...2..177G . free .
  6. Zibaee. Shahin. Makin. O. Sumner. Goedert. Michel. Serpell. Louise C.. May 2007. A simple algorithm locates β-strands in the amyloid fibril core of α-synuclein, Aβ, and tau using the amino acid sequence alone. Protein Science. en. 16. 5. 906–918. 10.1110/ps.062624507. 2206631. 17456743.
  7. Zhang. Zhuqing. Chen. Hao. Lai. Luhua. 2007-09-01. Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential. Bioinformatics. 23. 17. 2218–2225. 10.1093/bioinformatics/btm325. 17599928. 1367-4803. free.
  8. Conchillo-Solé. Oscar. de Groot. Natalia S.. Avilés. Francesc X.. Vendrell. Josep. Daura. Xavier. Ventura. Salvador. 2007-02-27. AGGRESCAN: a server for the prediction and evaluation of "hot spots" of aggregation in polypeptides. BMC Bioinformatics. 8. 1. 65. 10.1186/1471-2105-8-65. 1471-2105. 1828741. 17324296 . free .
  9. Zibaee. Shahin. Makin. O. Sumner. Goedert. Michel. Serpell. Louise C.. 2007. A simple algorithm locates β-strands in the amyloid fibril core of α-synuclein, Aβ, and tau using the amino acid sequence alone. Protein Science. en. 16. 5. 906–918. 10.1110/ps.062624507. 1469-896X. 2206631. 17456743.
  10. Pawlicki. Sandrine. Le Béchec. Antony. Delamarche. Christian. 2008-06-10. AMYPdb: A database dedicated to amyloid precursor proteins. BMC Bioinformatics. 9. 1. 273. 10.1186/1471-2105-9-273. 1471-2105. 2442844. 18544157 . free .
  11. Tian. Jian. Wu. Ningfeng. Guo. Jun. Fan. Yunliu. 2009-01-30. Prediction of amyloid fibril-forming segments based on a support vector machine. BMC Bioinformatics. 10. 1. S45. 10.1186/1471-2105-10-S1-S45. 1471-2105. 2648769. 19208147 . free .
  12. Kim. C.. Choi. J.. Lee. S. J.. Welsh. W. J.. Yoon. S.. 2009-07-01. NetCSSP: web application for predicting chameleon sequences and amyloid fibril formation. Nucleic Acids Research. en. 37. Web Server. W469–W473. 10.1093/nar/gkp351. 0305-1048. 2703942. 19468045.
  13. Yoon. Sukjoon. Welsh. William J.. Jung. Heeyoung. Yoo. Young Do. October 2007. CSSP2: An improved method for predicting contact-dependent secondary structure propensity. Computational Biology and Chemistry. en. 31. 5–6. 373–377. 10.1016/j.compbiolchem.2007.06.002. 17644485.
  14. Yoon. Sukjoon. Welsh. William J.. 2005-04-22. Rapid assessment of contact-dependent secondary structure propensity: Relevance to amyloidogenic sequences. Proteins: Structure, Function, and Bioinformatics. en. 60. 1. 110–117. 10.1002/prot.20477. 15849755. 44309651.
  15. Yoon. Sukjoon. Welsh. William J.. August 2004. Detecting hidden sequence propensity for amyloid fibril formation. Protein Science. 13. 8. 2149–2160. 2279810. 10.1110/ps.04790604. 15273309. 0961-8368.
  16. Bryan. Allen W. Jr.. Menke. Matthew. Cowen. Lenore J.. Lindquist. Susan L.. Berger. Bonnie. 2009-03-27. BETASCAN: Probable β-amyloids Identified by Pairwise Probabilistic Analysis. PLOS Computational Biology. en. 5. 3. e1000333. 10.1371/journal.pcbi.1000333. 1553-7358. 2653728. 19325876. 2009PLSCB...5E0333B . free .
  17. Garbuzynskiy. S. O.. Lobanov. M. Yu.. Galzitskaya. O. V.. 2010-02-01. FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics. en. 26. 3. 326–332. 10.1093/bioinformatics/btp691. 20019059. 1367-4803.
  18. Oliveberg. Mikael. March 2010. Waltz, an exciting new move in amyloid prediction. Nature Methods. en. 7. 3. 187–188. 10.1038/nmeth0310-187. 20195250. 205417298. 1548-7091.
  19. Maurer-Stroh. Sebastian. Debulpaep. Maja. Kuemmerer. Nico. de la Paz. Manuela Lopez. Martins. Ivo Cristiano. Reumers. Joke. Morris. Kyle L.. Copland. Alastair. Serpell. Louise. Serrano. Luis. Schymkowitz. Joost W. H.. March 2010. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nature Methods. en. 7. 3. 237–242. 10.1038/nmeth.1432. 20154676. 52874481. 1548-7105.
  20. Thompson. Michael J.. Sievers. Stuart A.. Karanicolas. John. Ivanova. Magdalena I.. Baker. David. Eisenberg. David. 2006-03-14. The 3D profile method for identifying fibril-forming segments of proteins. Proceedings of the National Academy of Sciences. en. 103. 11. 4074–4078. 10.1073/pnas.0511295103. 0027-8424. 1449648. 16537487. 2006PNAS..103.4074T. free.
  21. Nelson. Rebecca. Sawaya. Michael R.. Balbirnie. Melinda. Madsen. Anders Ø. Riekel. Christian. Grothe. Robert. Eisenberg. David. June 2005. Structure of the cross-β spine of amyloid-like fibrils. Nature. en. 435. 7043. 773–778. 10.1038/nature03680. 1476-4687. 1479801. 15944695. 2005Natur.435..773N.
  22. Kuhlman. Brian. Baker. David. 2000-09-12. Native protein sequences are close to optimal for their structures. Proceedings of the National Academy of Sciences. en. 97. 19. 10383–10388. 10.1073/pnas.97.19.10383. 0027-8424. 27033. 10984534. 2000PNAS...9710383K. free.
  23. Sawaya. Michael R.. Sambashivan. Shilpa. Nelson. Rebecca. Ivanova. Magdalena I.. Sievers. Stuart A.. Apostol. Marcin I.. Thompson. Michael J.. Balbirnie. Melinda. Wiltzius. Jed J. W.. McFarlane. Heather T.. Madsen. Anders Ø.. May 2007. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature. en. 447. 7143. 453–457. 10.1038/nature05695. 17468747. 2007Natur.447..453S. 4400866. 0028-0836.
  24. Bryan. Allen W.. O'Donnell. Charles W.. Menke. Matthew. Cowen. Lenore J.. Lindquist. Susan. Berger. Bonnie. February 2012. STITCHER: Dynamic assembly of likely amyloid and prion β‐structures from secondary structure predictions. Proteins: Structure, Function, and Bioinformatics. en. 80. 2. 410–420. 10.1002/prot.23203. 0887-3585. 3298606. 22095906.
  25. Tian. Jian. Wu. Ningfeng. Guo. Jun. Fan. Yunliu. January 2009. Prediction of amyloid fibril-forming segments based on a support vector machine. BMC Bioinformatics. en. 10. S1. S45. 10.1186/1471-2105-10-S1-S45. 1471-2105. 2648769. 19208147 . free .
  26. Zibaee. Shahin. Makin. O. Sumner. Goedert. Michel. Serpell. Louise C.. May 2007. A simple algorithm locates β-strands in the amyloid fibril core of α-synuclein, Aβ, and tau using the amino acid sequence alone. Protein Science. en. 16. 5. 906–918. 10.1110/ps.062624507. 2206631. 17456743.
  27. Maurer-Stroh. Sebastian. Debulpaep. Maja. Kuemmerer. Nico. de la Paz. Manuela Lopez. Martins. Ivo Cristiano. Reumers. Joke. Morris. Kyle L. Copland. Alastair. Serpell. Louise. Serrano. Luis. Schymkowitz. Joost W H. March 2010. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nature Methods. en. 7. 3. 237–242. 10.1038/nmeth.1432. 20154676. 52874481. 1548-7091.
  28. Garbuzynskiy. S. O.. Lobanov. M. Yu.. Galzitskaya. O. V.. 2010-02-01. FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics. en. 26. 3. 326–332. 10.1093/bioinformatics/btp691. 20019059. 1367-4803.
  29. Tsolis. Antonios C.. Papandreou. Nikos C.. Iconomidou. Vassiliki A.. Hamodrakas. Stavros J.. 2013-01-10. A Consensus Method for the Prediction of 'Aggregation-Prone' Peptides in Globular Proteins. PLOS ONE. en. 8. 1. e54175. 10.1371/journal.pone.0054175. 1932-6203. 3542318. 23326595. 2013PLoSO...854175T. free.
  30. Walsh. Ian. Seno. Flavio. Tosatto. Silvio C.E.. Trovato. Antonio. 2014-05-21. PASTA 2.0: an improved server for protein aggregation prediction. Nucleic Acids Research. 42. W1. W301–W307. 10.1093/nar/gku399. 1362-4962. 4086119. 24848016.
  31. Gasior. Pawel. Kotulska. Malgorzata. December 2014. FISH Amyloid – a new method for finding amyloidogenic segments in proteins based on site specific of aminoacids. BMC Bioinformatics. en. 15. 1. 54. 10.1186/1471-2105-15-54. 1471-2105. 3941796. 24564523 . free .
  32. Thangakani. A. Mary. Kumar. Sandeep. Nagarajan. R.. Velmurugan. D.. Gromiha. M. Michael. 2014-03-28. GAP: towards almost 100 percent prediction for β-strand-mediated aggregating peptides with distinct morphologies. Bioinformatics. 30. 14. 1983–1990. 10.1093/bioinformatics/btu167. 24681906. 1460-2059. free.
  33. Thangakani. Anthony Mary. Kumar. Sandeep. Velmurugan. Devadasan. Gromiha. Maria Siluvay Michael. April 2012. How do thermophilic proteins resist aggregation?. Proteins: Structure, Function, and Bioinformatics. en. 80. 4. 1003–1015. 10.1002/prot.24002. 22389104. 21496810.
  34. Thangakani. A Mary. Kumar. Sandeep. Velmurugan. D. Gromiha. M Michael. May 2013. Distinct position-specific sequence features of hexa-peptides that form amyloid-fibrils: application to discriminate between amyloid fibril and amorphous β-aggregate forming peptide sequences. BMC Bioinformatics. en. 14. S8. S6. 10.1186/1471-2105-14-S8-S6. 1471-2105. 3654898. 23815227 . free .
  35. Família. Carlos. Dennison. Sarah R.. Quintas. Alexandre. Phoenix. David A.. 2015-08-04. Permyakov. Eugene A.. Prediction of Peptide and Protein Propensity for Amyloid Formation. PLOS ONE. en. 10. 8. e0134679. 10.1371/journal.pone.0134679. 1932-6203. 4524629. 26241652. 2015PLoSO..1034679F. free.
  36. Ahmed. Abdullah B.. Znassi. Nadia. Château. Marie‐Thérèse. Kajava. Andrey V.. June 2015. A structure‐based approach to predict predisposition to amyloidosis. Alzheimer's & Dementia. en. 11. 6. 681–690. 10.1016/j.jalz.2014.06.007. 25150734. 3130411. 1552-5260.
  37. Wozniak. Pawel P.. Kotulska. Malgorzata. 2015-06-17. AmyLoad: website dedicated to amyloidogenic protein fragments. Bioinformatics. 31. 20. 3395–3397. 10.1093/bioinformatics/btv375. 26088800. 1367-4803. free.
  38. Van Durme. Joost. De Baets. Greet. Van Der Kant. Rob. Ramakers. Meine. Ganesan. Ashok. Wilkinson. Hannah. Gallardo. Rodrigo. Rousseau. Frederic. Schymkowitz. Joost. August 2016. Solubis: a webserver to reduce protein aggregation through mutation. Protein Engineering Design and Selection. en. 29. 8. 285–289. 10.1093/protein/gzw019. 27284085. 1741-0126. free.
  39. De Baets. Greet. Van Durme. Joost. van der Kant. Rob. Schymkowitz. Joost. Rousseau. Frederic. 2015-08-01. Solubis: optimize your protein: Fig. 1.. Bioinformatics. en. 31. 15. 2580–2582. 10.1093/bioinformatics/btv162. 25792555. 1367-4803. free.
  40. Sormanni. Pietro. Aprile. Francesco A.. Vendruscolo. Michele. January 2015. The CamSol Method of Rational Design of Protein Mutants with Enhanced Solubility. Journal of Molecular Biology. en. 427. 2. 478–490. 10.1016/j.jmb.2014.09.026. 25451785.
  41. Sormanni. Pietro. Amery. Leanne. Ekizoglou. Sofia. Vendruscolo. Michele. Popovic. Bojana. December 2017. Rapid and accurate in silico solubility screening of a monoclonal antibody library. Scientific Reports. en. 7. 1. 8200. 10.1038/s41598-017-07800-w. 2045-2322. 5558012. 28811609. 2017NatSR...7.8200S.
  42. Sormanni. Pietro. Aprile. Francesco A.. Vendruscolo. Michele. January 2015. The CamSol Method of Rational Design of Protein Mutants with Enhanced Solubility. Journal of Molecular Biology. en. 427. 2. 478–490. 10.1016/j.jmb.2014.09.026. 25451785.
  43. Sormanni. Pietro. Amery. Leanne. Ekizoglou. Sofia. Vendruscolo. Michele. Popovic. Bojana. December 2017. Rapid and accurate in silico solubility screening of a monoclonal antibody library. Scientific Reports. en. 7. 1. 8200. 10.1038/s41598-017-07800-w. 28811609. 5558012. 2017NatSR...7.8200S. 2045-2322.
  44. Burdukiewicz. Michał. Sobczyk. Piotr. Rödiger. Stefan. Duda-Madej. Anna. Mackiewicz. Paweł. Kotulska. Małgorzata. 2017-10-11. Amyloidogenic motifs revealed by n-gram analysis. Scientific Reports. en. 7. 1. 12961. 10.1038/s41598-017-13210-9. 2045-2322. 5636826. 29021608. 2017NatSR...712961B.
  45. Bondarev. Stanislav A. Bondareva. Olga V. Zhouravleva. Galina A. Kajava. Andrey V. 2017-10-04. BetaSerpentine: a bioinformatics tool for reconstruction of amyloid structures. Bioinformatics. 34. 4. 599–608. 10.1093/bioinformatics/btx629. 29444233. 1367-4803. free.
  46. Sankar. Kannan. Krystek. Stanley R.. Carl. Stephen M.. Day. Tyler. Maier. Johannes K. X.. November 2018. AggScore: Prediction of aggregation-prone regions in proteins based on the distribution of surface patches. Proteins: Structure, Function, and Bioinformatics. en. 86. 11. 1147–1156. 10.1002/prot.25594. 30168197. 52131048.
  47. Rawat. Puneet. Prabakaran. R. Kumar. Sandeep. Gromiha. M Michael. 2019-10-10. AggreRATE-Pred: a mathematical model for the prediction of change in aggregation rate upon point mutation. Bioinformatics. 36. 5. 1439–1444. 10.1093/bioinformatics/btz764. 31599925. 1367-4803.
  48. Kuriata. Aleksander. Iglesias. Valentin. Pujols. Jordi. Kurcinski. Mateusz. Kmiecik. Sebastian. Ventura. Salvador. 2019-05-03. Aggrescan3D (A3D) 2.0: prediction and engineering of protein solubility. Nucleic Acids Research. 47. W1. W300–W307. 10.1093/nar/gkz321. 0305-1048. 6602499. 31049593.
  49. Kuriata. Aleksander. Iglesias. Valentin. Kurcinski. Mateusz. Ventura. Salvador. Kmiecik. Sebastian. 2019-03-02. Aggrescan3D standalone package for structure-based prediction of protein aggregation properties. Bioinformatics. 35. 19. 3834–3835. 10.1093/bioinformatics/btz143. 30825368. 1367-4803.
  50. Zambrano. Rafael. Jamroz. Michal. Szczasiuk. Agata. Pujols. Jordi. Kmiecik. Sebastian. Ventura. Salvador. 2015-04-16. AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic Acids Research. 43. W1. W306–W313. 10.1093/nar/gkv359. 0305-1048. 4489226. 25883144.
  51. Gil-Garcia. Marcos. Bañó-Polo. Manuel. Varejão. Nathalia. Jamroz. Michal. Kuriata. Aleksander. Díaz-Caballero. Marta. Lascorz. Jara. Morel. Bertrand. Navarro. Susanna. Reverter. David. Kmiecik. Sebastian. 2018-09-04. Combining Structural Aggregation Propensity and Stability Predictions To Redesign Protein Solubility. Molecular Pharmaceutics. 15. 9. 3846–3859. 10.1021/acs.molpharmaceut.8b00341. 30036481. 206688348. 1543-8384.
  52. Pujols. Jordi. Iglesias. Valentín. Santos. Jaime. Kuriata. Aleksander. Kmiecik. Sebastian. Ventura. Salvador. 2021-04-14. A3D 2.0 update for the prediction and optimization of protein solubility. en. 10.1101/2021.04.13.439600. 233329012.
  53. Keresztes. László. Szögi. Evelin. Varga. Bálint. Farkas. Viktor. Perczel. András. Grolmusz. Vince. April 2021. The Budapest Amyloid Predictor and Its Applications. Biomolecules. en. 11. 4. 500. 10.3390/biom11040500. 8067080. 33810341. free.
  54. Prabakaran. R.. Rawat. Puneet. Kumar. Sandeep. Michael Gromiha. M.. May 2021. ANuPP: A Versatile Tool to Predict Aggregation Nucleating Regions in Peptides and Proteins. Journal of Molecular Biology. en. 433. 11. 166707. 10.1016/j.jmb.2020.11.006. 33972019. 228867153.