Prony analysis (Prony's method) was developed by Gaspard Riche de Prony in 1795. However, practical use of the method awaited the digital computer.[1] Similar to the Fourier transform, Prony's method extracts valuable information from a uniformly sampled signal and builds a series of damped complex exponentials or damped sinusoids. This allows the estimation of frequency, amplitude, phase and damping components of a signal.
Let
f(t)
N
\hat{f}(t)=
N | |
\sum | |
i=1 |
Ai
\sigmait | |
e |
\cos(\omegait+\phii)
to the observed
f(t)
\begin{align} \hat{f}(t)&=
N | |
\sum | |
i=1 |
Ai
\sigmait | |
e |
\cos(\omegait+\phii)\\ &=
N | |
\sum | |
i=1 |
\tfrac{1}{2}Ai\left(
j\phii | |
e |
| ||||||||||
e |
+
-j\phii | |
e |
| ||||||||||
e |
\right), \end{align}
where
\pm | |
λ | |
i |
=\sigmai\pmj\omegai
\sigmai=-\omega0,i\xii
\omegai=\omega0,i
2} | |
\sqrt{1-\xi | |
i |
\phii
Ai
j
j2=-1
Prony's method is essentially a decomposition of a signal with
M
Regularly sample
\hat{f}(t)
n
N
Fn=\hat{f}(\Deltatn)=
M | |
\sum | |
m=1 |
\Betam
λm\Deltatn | |
e |
, n=0,...,N-1.
If
\hat{f}(t)
\begin{align} \Betaa&=\tfrac{1}{2}Ai
\phiij | |
e |
,\\ \Betab&=\tfrac{1}{2}Ai
-\phiij | |
e |
,\\ λa&=\sigmai+j\omegai,\\ λb&=\sigmai-j\omegai, \end{align}
\begin{align} \Betaa
λat | |
e |
+\Betab
λbt | |
e |
&=\tfrac{1}{2}Ai
\phiij | |
e |
(\sigmai+j\omegai)t | |
e |
+ \tfrac{1}{2}Ai
-\phiij | |
e |
(\sigmai-j\omegai)t | |
e |
\\ &=Ai
\sigmait | |
e |
\cos(\omegait+\phii). \end{align}
Because the summation of complex exponentials is the homogeneous solution to a linear difference equation, the following difference equation will exist:
\hat{f}(\Deltatn)=
M | |
\sum | |
m=1 |
\hat{f}[\Deltat(n-m)]Pm, n=M,...,N-1.
The key to Prony's Method is that the coefficients in the difference equation are related to the following polynomial:
zM-P1zM-1-...-PM=
M | |
\prod | |
m=1 |
\left(z-
λm | |
e |
\right).
These facts lead to the following three steps within Prony's method:
1) Construct and solve the matrix equation for the
Pm
\begin{bmatrix} FM\\ \vdots\\ FN-1\end{bmatrix} = \begin{bmatrix} FM-1&...&F0\\ \vdots&\ddots&\vdots\\ FN-2&...&FN-M-1\end{bmatrix} \begin{bmatrix} P1\\ \vdots\\ PM \end{bmatrix}.
Note that if
N\ne2M
Pm
2) After finding the
Pm
zM-P1zM-1-...-PM.
The
m
λm | |
e |
3) With the
λm | |
e |
Fn
\Betam
\begin{bmatrix}
F | |
k1 |
\\ \vdots\\
F | |
kM |
\end{bmatrix} = \begin{bmatrix}
λ1 | |
(e |
k1 | |
) |
&...&
λM | |
(e |
k1 | |
) |
\\ \vdots&\ddots&\vdots\\
λ1 | |
(e |
kM | |
) |
&...&
λM | |
(e |
kM | |
) |
\end{bmatrix} \begin{bmatrix} \Beta1\\ \vdots\\ \BetaM \end{bmatrix},
M
ki
M
Note that solving for
λm
λm | |
e |
λm | |
e |
=
λm+q2\pij | |
e |
q
\left|\operatorname{Im}(λm)\right|=\left|\omegam\right|<
\pi | |
\Deltat |
.