Projected normal distribution | |
Type: | density |
Notation: | l{PN}n(\boldsymbol\mu,\boldsymbol\Sigma) |
Parameters: | \boldsymbol\mu\in\Rn \boldsymbol\Sigma\in\Rn |
Support: | \boldsymbol\theta\in[0,\pi]n x [0,2\pi) |
In directional statistics, the projected normal distribution (also known as offset normal distribution or angular normal distribution) is a probability distribution over directions that describes the radial projection of a random variable with n-variate normal distribution over the unit (n-1)-sphere.
Given a random variable
\boldsymbolX\in\Rn
l{N}n(\boldsymbol\mu,\boldsymbol\Sigma)
l{PN}n(\boldsymbol\mu,\boldsymbol\Sigma)
\boldsymbolY=
\boldsymbolX | |
\lVert\boldsymbolX\rVert |
\boldsymbolX
\boldsymbol\mu
\boldsymbol\Sigma
The density of the projected normal distribution
l{PN}n(\boldsymbol\mu,\boldsymbol\Sigma)
l{N}n(\boldsymbol\mu,\boldsymbol\Sigma)
In spherical coordinates with radial component
r\in[0,infty)
\boldsymbol\theta=(\theta1,...,\thetan-1)\in[0,\pi]n x [0,2\pi)
\boldsymbolx=(x1,...,xn)\in\Rn
\boldsymbolx=r\boldsymbolv
\lVert\boldsymbolv\rVert=1
p(r,\boldsymbol\theta|\boldsymbol\mu,\boldsymbol\Sigma)=
rn-1 | |
\sqrt{|\boldsymbol\Sigma| |
(2
| ||||
\pi) |
and the density of
l{PN}n(\boldsymbol\mu,\boldsymbol\Sigma)
p(\boldsymbol\theta|\boldsymbol\mu,\boldsymbol\Sigma)=
infty | |
\int | |
0 |
p(r,\boldsymbol\theta|\boldsymbol\mu,\boldsymbol\Sigma)dr.
Parametrising the position on the unit circle in polar coordinates as
\boldsymbolv=(\cos\theta,\sin\theta)
\boldsymbol\mu
\boldsymbol\Sigma
p(\theta|\boldsymbol\mu,\boldsymbol\Sigma)=
| |||||||||
2\pi\sqrt{|\boldsymbol\Sigma| |
\boldsymbolv\top\boldsymbol\Sigma-1\boldsymbolv} \left(1+T(\theta)
\Phi(T(\theta)) | |
\phi(T(\theta)) |
\right)I[0,(\theta)
where
\phi
\Phi
T(\theta)=
\boldsymbolv\top\boldsymbol\Sigma-1\boldsymbol\mu | |
\sqrt{\boldsymbolv\top\boldsymbol\Sigma-1\boldsymbolv |
I
In the circular case, if the mean vector
\boldsymbol\mu
\theta=\alpha
\theta=\alpha+\pi
\alpha
\boldsymbol\mu=(r\cos\alpha,r\sin\alpha)
\theta=\alpha
\theta=\alpha+\pi
Parametrising the position on the unit sphere in spherical coordinates as
\boldsymbolv=(\cos\theta1\sin\theta2,\sin\theta1\sin\theta2,\cos\theta2)
\boldsymbol\theta=(\theta1,\theta2)
\theta1\in[0,2\pi)
\theta2\in[0,\pi]
p(\boldsymbol\theta|\boldsymbol\mu,\boldsymbol\Sigma)=
| |||||||||
\sqrt{|\boldsymbol\Sigma| |
\left(2\pi\boldsymbolv\top\boldsymbol\Sigma-1\boldsymbolv
| ||||
\right) |