(X1,d
X1 |
),\ldots,(Xn,d
Xn |
)
p\in[1,infty)
dp((x1,\ldots,xn),(y1,\ldots,yn))=
\|\left(d | |
X1 |
(x1,y1),\ldots,
d | |
Xn |
(xn,yn)\right)\|p
For
p=infty
dinfty((x1,\ldots,xn),(y1,\ldots,yn)):=max\left\{
d | |
X1 |
(x1,y1),\ldots,
d | |
Xn |
(xn,yn)\right\}.
For Euclidean spaces, using the L2 norm gives rise to the Euclidean metric in the product space; however, any other choice of p will lead to a topologically equivalent metric space. In the category of metric spaces (with Lipschitz maps having Lipschitz constant 1), the product (in the category theory sense) uses the sup metric.
For Riemannian manifolds
(M1,g1)
(M2,g2)
g=g1 ⊕ g2
M1 x M2
g(X1+X2,Y1+Y2)=g1(X1,Y1)+g2(X2,Y2)
for
Xi,Yi\in
T | |
pi |
Mi
T | |
(p1,p2) |
(M1 x M2)=T
p1 |
M1 ⊕
T | |
p2 |
M2