In complex analysis, the argument principle (or Cauchy's argument principle) is a theorem relating the difference between the number of zeros and poles of a meromorphic function to a contour integral of the function's logarithmic derivative.
If f(z) is a meromorphic function inside and on some closed contour C, and f has no zeros or poles on C, then
1 | |
2\pii |
\ointC{f'(z)\overf(z)}dz=Z-P
More generally, suppose that f(z) is a meromorphic function on an open set Ω in the complex plane and that C is a closed curve in Ω which avoids all zeros and poles of f and is contractible to a point inside Ω. For each point z ∈ Ω, let n(C,z) be the winding number of C around z. Then
1 | |
2\pii |
\ointC
f'(z) | |
f(z) |
dz=\suman(C,a)-\sumbn(C,b)
\ointC
f'(z) | |
f(z) |
dz
\ointC
f'(z) | |
f(z) |
dz=\ointf(C)
1 | |
w |
dw
d | log(f(z))= | |
dz |
f'(z) | |
f(z) |
Let zZ be a zero of f. We can write f(z) = (z - zZ)kg(z) where k is the multiplicity of the zero, and thus g(zZ) ≠ 0. We get
k-1 | |
f'(z)=k(z-z | |
Z) |
kg'(z) | |
g(z)+(z-z | |
Z) |
and
{f'(z)\overf(z)}={k\overz-zZ}+{g'(z)\overg(z)}.
Since g(zZ) ≠ 0, it follows that g' (z)/g(z) has no singularities at zZ, and thus is analytic at zZ, which implies that the residue of f′(z)/f(z) at zZ is k.
Let zP be a pole of f. We can write f(z) = (z - zP)-mh(z) where m is the order of the pole, and h(zP) ≠ 0. Then,
-m-1 | |
f'(z)=-m(z-z | |
P) |
-m | |
h(z)+(z-z | |
P) |
h'(z).
and
{f'(z)\overf(z)}={-m\overz-zP}+{h'(z)\overh(z)}
similarly as above. It follows that h′(z)/h(z) has no singularities at zP since h(zP) ≠ 0 and thus it is analytic at zP. We find that the residue off′(z)/f(z) at zP is -m.
Putting these together, each zero zZ of multiplicity k of f creates a simple pole forf′(z)/f(z) with the residue being k, and each pole zP of order m off creates a simple pole for f′(z)/f(z) with the residue being -m. (Here, by a simple pole wemean a pole of order one.) In addition, it can be shown that f′(z)/f(z) has no other poles,and so no other residues.
By the residue theorem we have that the integral about C is the product of 2πi and the sum of the residues. Together, the sum of the ks for each zero zZ is the number of zeros counting multiplicities of the zeros, and likewise for the poles, and so we have our result.
The argument principle can be used to efficiently locate zeros or poles of meromorphic functions on a computer. Even with rounding errors, the expression
{1\over2\pii}\ointC{f'(z)\overf(z)}dz
\xi(s)
A consequence of the more general formulation of the argument principle is that, under the same hypothesis, if g is an analytic function in Ω, then
1 | |
2\pii |
\ointCg(z)
f'(z) | |
f(z) |
dz=\suman(C,a)g(a)-\sumbn(C,b)g(b).
For example, if f is a polynomial having zeros z1, ..., zp inside a simple contour C, and g(z) = zk, then
1 | |
2\pii |
\ointC
| ||||
z |
dz=
k, | |
z | |
p |
Another consequence is if we compute the complex integral:
\ointCf(z){g'(z)\overg(z)}dz
for an appropriate choice of g and f we have the Abel–Plana formula:
infty | |
\sum | |
n=0 |
infty | |
f(n)-\int | |
0 |
f(x)dx=
infty | |
f(0)/2+i\int | |
0 |
f(it)-f(-it) | |
e2\pi-1 |
dt
which expresses the relationship between a discrete sum and its integral.
The argument principle is also applied in control theory. In modern books on feedback control theory, it is commonly used as the theoretical foundation for the Nyquist stability criterion. Moreover, a more generalized form of the argument principle can be employed to derive Bode's sensitivity integral and other related integral relationships.[1]
There is an immediate generalization of the argument principle. Suppose that g is analytic in the region
\Omega
1 | |
2\pii |
\ointC{f'(z)\overf(z)}g(z)dz=\sumag(a)n(C,a)-\sumbg(b)n(C,b)
According to the book by Frank Smithies (Cauchy and the Creation of Complex Function Theory, Cambridge University Press, 1997, p. 177), Augustin-Louis Cauchy presented a theorem similar to the above on 27 November 1831, during his self-imposed exile in Turin (then capital of the Kingdom of Piedmont-Sardinia) away from France. However, according to this book, only zeroes were mentioned, not poles. This theorem by Cauchy was only published many years later in 1874 in a hand-written form and so is quite difficult to read. Cauchy published a paper with a discussion on both zeroes and poles in 1855, two years before his death.