Prime manifold explained
In topology, a branch of mathematics, a prime manifold is an n-manifold that cannot be expressed as a non-trivial connected sum of two n-manifolds. Non-trivial means that neither of the two is an n-sphere.A similar notion is that of an irreducible n-manifold, which is one in which any embedded (n − 1)-sphere bounds an embedded n-ball. Implicit in this definition is the use of a suitable category, such as the category of differentiable manifolds or the category of piecewise-linear manifolds.
A 3-manifold is irreducible if and only if it is prime, except for two cases: the product
and the
non-orientable fiber bundle of the 2-sphere over the circle
are both prime but not irreducible. This is somewhat analogous to the notion in
algebraic number theory of
prime ideals generalizing
Irreducible elements.
According to a theorem of Hellmuth Kneser and John Milnor, every compact, orientable 3-manifold is the connected sum of a unique (up to homeomorphism) collection of prime 3-manifolds.
Definitions
Consider specifically 3-manifolds.
Irreducible manifold
A 3-manifold is if every smooth sphere bounds a ball. More rigorously, a differentiable connected 3-manifold
is irreducible if every differentiable
submanifold
homeomorphic to a
sphere bounds a subset
(that is,
) which is homeomorphic to the closed ball
The assumption of differentiability of
is not important, because every topological 3-manifold has a unique differentiable structure. However it is necessary to assume that the sphere is
smooth (a differentiable submanifold), even having a
tubular neighborhood. The differentiability assumption serves to exclude pathologies like the
Alexander's horned sphere (see below).
A 3-manifold that is not irreducible is called .
Prime manifolds
A connected 3-manifold
is
prime if it cannot be expressed as a
connected sum
of two manifolds neither of which is the 3-sphere
(or, equivalently, neither of which is homeomorphic to
).
Examples
Euclidean space
is irreducible: all smooth 2-spheres in it bound balls.
On the other hand, Alexander's horned sphere is a non-smooth sphere in
that does not bound a ball. Thus the stipulation that the sphere be smooth is necessary.
Sphere, lens spaces
is irreducible. The
product space
is not irreducible, since any 2-sphere
(where
is some point of
) has a connected complement which is not a ball (it is the product of the 2-sphere and a line).
with
(and thus not the same as
) is irreducible.
Prime manifolds and irreducible manifolds
A 3-manifold is irreducible if and only if it is prime, except for two cases: the product
and the
non-orientable fiber bundle of the 2-sphere over the circle
are both prime but not irreducible.
From irreducible to prime
An irreducible manifold
is prime. Indeed, if we express
as a connected sum
then
is obtained by removing a ball each from
and from
and then gluing the two resulting 2-spheres together. These two (now united) 2-spheres form a 2-sphere in
The fact that
is irreducible means that this 2-sphere must bound a ball. Undoing the gluing operation, either
or
is obtained by gluing that ball to the previously removed ball on their borders. This operation though simply gives a 3-sphere. This means that one of the two factors
or
was in fact a (trivial) 3-sphere, and
is thus prime.
From prime to irreducible
Let
be a prime 3-manifold, and let
be a 2-sphere embedded in it. Cutting on
one may obtain just one manifold
or perhaps one can only obtain two manifolds
and
In the latter case, gluing balls onto the newly created spherical boundaries of these two manifolds gives two manifolds
and
such that
Since
is prime, one of these two, say
is
This means
is
minus a ball, and is therefore a ball itself. The sphere
is thus the border of a ball, and since we are looking at the case where only this possibility exists (two manifolds created) the manifold
is irreducible.
It remains to consider the case where it is possible to cut
along
and obtain just one piece,
In that case there exists a closed simple
curve
in
intersecting
at a single point. Let
be the union of the two
tubular neighborhoods of
and
The
boundary
turns out to be a 2-sphere that cuts
into two pieces,
and the complement of
Since
is prime and
is not a ball, the complement must be a ball. The manifold
that results from this fact is almost determined, and a careful analysis shows that it is either
or else the other, non-orientable,
fiber bundle of
over
References
- Book: William Jaco. William Jaco. Lectures on 3-manifold topology. 0-8218-1693-4.
See also