Prime factor exponent notation explained

In his 1557 work The Whetstone of Witte, British mathematician Robert Recorde proposed an exponent notation by prime factorisation, which remained in use up until the eighteenth century and acquired the name Arabic exponent notation. The principle of Arabic exponents was quite similar to Egyptian fractions; large exponents were broken down into smaller prime numbers. Squares and cubes were so called; prime numbers from five onwards were called sursolids.

Although the terms used for defining exponents differed between authors and times, the general system was the primary exponent notation until René Descartes devised the Cartesian exponent notation, which is still used today.

This is a list of Recorde's terms.

Cartesian index Arabic index Recordian symbol !Explanation
1 Simple
2 Square (compound form is zenzic) z
3 Cubic &
4 Zenzizenzic (biquadratic) zz square of squares
5 First sursolid sz first prime exponent greater than three
6 Zenzicubic z& square of cubes
7 Second sursolid Bsz second prime exponent greater than three
8 Zenzizenzizenzic (quadratoquadratoquadratum) zzz square of squared squares
9 Cubicubic && cube of cubes
10 Square of first sursolid zsz square of five
11 Third sursolid csz third prime number greater than 3
12 Zenzizenzicubic zz& square of square of cubes
13 Fourth sursolid dsz
14 Square of second sursolid zbsz square of seven
15 Cube of first sursolid &sz cube of five
16 Zenzizenzizenzizenzic zzzz "square of squares, squaredly squared"
17 Fifth sursolid esz
18 Zenzicubicubic z&&
19 Sixth sursolid fsz
20 Zenzizenzic of first sursolid zzsz
21 Cube of second sursolid &bsz
22 Square of third sursolid zcsz

By comparison, here is a table of prime factors:

1 - 20
1unit
22
33
422
55
62·3
77
823
932
102·5
1111
1222·3
1313
142·7
153·5
1624
1717
182·32
1919
2022·5
21 - 40
213·7
222·11
2323
2423·3
2552
262·13
2733
2822·7
2929
302·3·5
3131
3225
333·11
342·17
355·7
3622·32
3737
382·19
393·13
4023·5
41 - 60
4141
422·3·7
4343
4422·11
4532·5
462·23
4747
4824·3
4972
502·52
513·17
5222·13
5353
542·33
555·11
5623·7
573·19
582·29
5959
6022·3·5
61 - 80
6161
622·31
6332·7
6426
655·13
662·3·11
6767
6822·17
693·23
702·5·7
7171
7223·32
7373
742·37
753·52
7622·19
777·11
782·3·13
7979
8024·5
81 - 100
8134
822·41
8383
8422·3·7
855·17
862·43
873·29
8823·11
8989
902·32·5
917·13
9222·23
933·31
942·47
955·19
9625·3
9797
982·72
9932·11
10022·52

See also

External links (references)