In mathematics, the prime decomposition theorem for 3-manifolds states that every compact, orientable 3-manifold is the connected sum of a unique (up to homeomorphism) finite collection of prime 3-manifolds.
A manifold is prime if it is not homeomorphic to any connected sum of manifolds, except for the trivial connected sum of the manifold with a sphere of the same dimension, . If
P
S2 x S1
S2
S1,
S2
S1.
The prime decomposition holds also for non-orientable 3-manifolds, but the uniqueness statement must be modified slightly. Every compact, non-orientable 3-manifold is a connected sum of irreducible 3-manifolds and non-orientable
S2
S1.
S2
S1.
The proof is based on normal surface techniques originated by Hellmuth Kneser. Existence was proven by Kneser, but the exact formulation and proof of the uniqueness was done more than 30 years later by John Milnor.