Pregeometry (model theory) explained

Pregeometry, and in full combinatorial pregeometry, are essentially synonyms for "matroid". They were introduced by Gian-Carlo Rota with the intention of providing a less "ineffably cacophonous" alternative term. Also, the term combinatorial geometry, sometimes abbreviated to geometry, was intended to replace "simple matroid". These terms are now infrequently used in the study of matroids.

It turns out that many fundamental concepts of linear algebra – closure, independence, subspace, basis, dimension – are available in the general framework of pregeometries.

In the branch of mathematical logic called model theory, infinite finitary matroids, there called "pregeometries" (and "geometries" if they are simple matroids), are used in the discussion of independence phenomena. The study of how pregeometries, geometries, and abstract closure operators influence the structure of first-order models is called geometric stability theory.

Motivation

If

V

is a vector space over some field and

A\subseteqV

, we define

cl(A)

to be the set of all linear combinations of vectors from

A

, also known as the span of

A

. Then we have

A\subseteqcl(A)

and

cl(cl(A))=cl(A)

and

A\subseteqBcl(A)\subseteqcl(B)

. The Steinitz exchange lemma is equivalent to the statement: if

b\incl(A\cup\{c\})\smallsetminuscl(A)

, then

c\incl(A\cup\{b\}).

The linear algebra concepts of independent set, generating set, basis and dimension can all be expressed using the

cl

-operator alone. A pregeometry is an abstraction of this situation: we start with an arbitrary set

S

and an arbitrary operator

cl

which assigns to each subset

A

of

S

a subset

cl(A)

of

S

, satisfying the properties above. Then we can define the "linear algebra" concepts also in this more general setting.

This generalized notion of dimension is very useful in model theory, where in certain situation one can argue as follows: two models with the same cardinality must have the same dimension and two models with the same dimension must be isomorphic.

Definitions

Pregeometries and geometries

A combinatorial pregeometry (also known as a finitary matroid) is a pair

(S,cl)

, where

S

is a set and

cl:l{P}(S)\tol{P}(S)

(called the closure map) satisfies the following axioms. For all

a,b,c\inS

and

A,B\subseteqS

:

cl:(l{P}(S),\subseteq)\to(l{P}(S),\subseteq)

is monotone increasing and dominates

id

(i.e.

A\subseteqB

implies

A\subseteqcl(A)\subseteqcl(B)

) and is idempotent (i.e.

cl(cl(A))=cl(A)

)
  1. Finite character: For each

a\incl(A)

there is some finite

F\subseteqA

with

a\incl(F)

.
  1. Exchange principle: If

b\incl(A\cup\{c\})\smallsetminuscl(A)

, then

c\incl(A\cup\{b\})

(and hence by monotonicity and idempotence in fact

c\incl(A\cup\{b\})\smallsetminuscl(A)

).Sets of the form

cl(A)

for some

A\subseteqS

are called closed. It is then clear that finite intersections of closed sets are closed and that

cl(A)

is the smallest closed set containing

A

.

A geometry is a pregeometry in which the closure of singletons are singletons and the closure of the empty set is the empty set.

Independence, bases and dimension

Given sets

A,D\subseteqS

,

A

is independent over

D

if

a\notincl((A\setminus\{a\})\cupD)

for any

a\inA

. We say that

A

is independent if it is independent over the empty set.

A set

B\subseteqA

is a basis for

A

over

D

if it is independent over

D

and

A\subseteqcl(B\cupD)

.

A basis is the same as a maximal independent subset, and using Zorn's lemma one can show that every set has a basis. Since a pregeometry satisfies the Steinitz exchange property all bases are of the same cardinality, hence we may define the dimension of

A

over

D

, written as

dimDA

, as the cardinality of any basis of

A

over

D

. Again, the dimension

dimA

of

A

is defined to be the dimesion over the empty set.

The sets

A,B

are independent over

D

if

dimB\cupA'=\dimDA'

whenever

A'

is a finite subset of

A

. Note that this relation is symmetric.

Automorphisms and homogeneous pregeometries

An automorphism of a pregeometry

(S,cl)

is a bijection

\sigma:S\toS

such that

\sigma(cl(X))=cl(\sigma(X))

for any

X\subseteqS

.

A pregeometry

S

is said to be homogeneous if for any closed

X\subseteqS

and any two elements

a,b\inS\setminusX

there is an automorphism of

S

which maps

a

to

b

and fixes

X

pointwise.

The associated geometry and localizations

Given a pregeometry

(S,cl)

its associated geometry (sometimes referred in the literature as the canonical geometry) is the geometry

(S',cl')

where

S'=\{cl(a)\mida\inS\setminuscl(\varnothing)\}

, and
  1. For any

X\subseteqS

,

cl'(\{cl(a)\mida\inX\})=\{cl(b)\midb\incl(X)\}

Its easy to see that the associated geometry of a homogeneous pregeometry is homogeneous.

Given

A\subseteqS

the localization of

S

is the pregeometry

(S,clA)

where

clA(X)=cl(X\cupA)

.

Types of pregeometries

The pregeometry

(S,cl)

is said to be:

cl(X)=cup\{cl(a)\mida\inX\}

for all non-empty

X\subseteqS

.

X,Y\subseteqS

satisfy the equation

dim(X\cupY)=dim(X)+dim(Y)-dim(X\capY)

(or equivalently that

X

is independent of

Y

over

X\capY

).

Triviality, modularity and local modularity pass to the associated geometry and are preserved under localization.

If

S

is a locally modular homogeneous pregeometry and

a\inS\setminuscl(\varnothing)

then the localization of

S

in

b

is modular.

The geometry

S

is modular if and only if whenever

a,b\inS

,

A\subseteqS

,

dim\{a,b\}=2

and

dimA\{a,b\}\le1

then

(cl\{a,b\}\capcl(A))\setminuscl(\varnothing)\ne\varnothing

.

Examples

The trivial example

If

S

is any set we may define

cl(A)=A

for all

A\subseteqS

. This pregeometry is a trivial, homogeneous, locally finite geometry.

Vector spaces and projective spaces

Let

F

be a field (a division ring actually suffices) and let

V

be a vector space over

F

. Then

V

is a pregeometry where closures of sets are defined to be their span. The closed sets are the linear subspaces of

V

and the notion of dimension from linear algebra coincides with the pregeometry dimension.

This pregeometry is homogeneous and modular. Vector spaces are considered to be the prototypical example of modularity.

V

is locally finite if and only if

F

is finite.

V

is not a geometry, as the closure of any nontrivial vector is a subspace of size at least

2

.

The associated geometry of a

\kappa

-dimensional vector space over

F

is the

(\kappa-1)

-dimensional projective space over

F

. It is easy to see that this pregeometry is a projective geometry.

Affine spaces

Let

V

be a

\kappa

-dimensional affine space over a field

F

. Given a set define its closure to be its affine hull (i.e. the smallest affine subspace containing it).

This forms a homogeneous

(\kappa+1)

-dimensional geometry.

An affine space is not modular (for example, if

X

and

Y

are parallel lines then the formula in the definition of modularity fails). However, it is easy to check that all localizations are modular.

Field extensions and transcendence degree

Let

L/K

be a field extension. The set

L

becomes a pregeometry if we define

cl(A)=\{x\inL:xisalgebraicoverK(A)\}

for

A\subseteqL

. The set

A

is independent in this pregeometry if and only if it is algebraically independent over

K

. The dimension of

A

coincides with the transcendence degree

trdeg(K(A)/K)

.

In model theory, the case of

L

being algebraically closed and

K

its prime field is especially important.

While vector spaces are modular and affine spaces are "almost" modular (i.e. everywhere locally modular), algebraically closed fields are examples of the other extremity, not being even locally modular (i.e. none of the localizations is modular).

Strongly minimal sets in model theory

Given a countable first-order language L and an L-structure M, any definable subset D of M that is strongly minimal gives rise to a pregeometry on the set D. The closure operator here is given by the algebraic closure in the model-theoretic sense.

A model of a strongly minimal theory is determined up to isomorphism by its dimension as a pregeometry; this fact is used in the proof of Morley's categoricity theorem.

In minimal sets over stable theories the independence relation coincides with the notion of forking independence.

References