Poussin graph explained

Poussin graph
Vertices:15
Edges:39
Automorphisms:2 (Z/2Z)
Girth:3
Diameter:3
Radius:3
Chromatic Number:4
Chromatic Index:6
Properties:Hamiltonian
Planar

In graph theory, the Poussin graph is a planar graph with 15 vertices and 39 edges. It is named after Charles Jean de la Vallée-Poussin.

History

In 1879, Alfred Kempe published a proof of the four color theorem, one of the big conjectures in graph theory.[1] While the theorem is true, Kempe's proof is incorrect. Percy John Heawood illustrated it in 1890[2] with a counter-example, and de la Vallée-Poussin reached the same conclusion in 1896 with the Poussin graph.[3]

Kempe's (incorrect) proof is based on alternating chains, and as those chains prove useful in graph theory mathematicians remain interested in such counterexamples.More were found later: first, the Errera graph in 1921,[4] [5] then the Kittell graph in 1935, with 23 vertices,[6] and finally two minimal counter-examples (the Soifer graph in 1997 and the Fritsch graph in 1998, both of order 9).[7] [8] [9]

External links

Notes and References

  1. Kempe, A. B. "On the Geographical Problem of Four-Colors." Amer. J. Math. 2, 193–200, 1879.
  2. P. J. Heawood, "Map colour theorem", Quart. J. Pure Appl. Math. 24 (1890), 332–338.
  3. R. A. Wilson, Graphs, colourings and the four-colour theorem, Oxford University Press, Oxford, 2002. .
  4. Errera, A. "Du coloriage des cartes et de quelques questions d'analysis situs." Ph.D. thesis. 1921.
  5. Peter Heinig. Proof that the Errera Graph is a narrow Kempe-Impasse. 2007.
  6. Kittell, I. "A Group of Operations on a Partially Colored Map." Bull. Amer. Math. Soc. 41, 407–413, 1935.
  7. A. Soifer, “Map coloring in the victorian age: problems and history”, Mathematics Competitions 10 (1997), 20–31.
  8. R. Fritsch and G. Fritsch, The Four-Color Theorem, Springer, New York, 1998. .
  9. Gethner, E. and Springer, W. M. II. « How False Is Kempe's Proof of the Four-Color Theorem? » Congr. Numer. 164, 159–175, 2003.