Postnikov system explained

In homotopy theory, a branch of algebraic topology, a Postnikov system (or Postnikov tower) is a way of decomposing a topological space's homotopy groups using an inverse system of topological spaces whose homotopy type at degree

k

agrees with the truncated homotopy type of the original space

X

. Postnikov systems were introduced by, and are named after, Mikhail Postnikov.

Definition

X

is an inverse system of spaces

\toXn\xrightarrow{pn}Xn-1\xrightarrow{pn-1

} \cdots \xrightarrow X_2 \xrightarrow X_1 \xrightarrow *with a sequence of maps

\phin:X\toXn

compatible with the inverse system such that
  1. The map

\phin:X\toXn

induces an isomorphism

\pii(X)\to\pii(Xn)

for every

i\leqn

.

\pii(Xn)=0

for

i>n

.[1]
  1. Each map

pn:Xn\toXn-1

is a fibration, and so the fiber

Fn

is an Eilenberg–MacLane space,

K(\pin(X),n)

.

The first two conditions imply that

X1

is also a

K(\pi1(X),1)

-space. More generally, if

X

is

(n-1)

-connected, then

Xn

is a

K(\pin(X),n)

-space and all

Xi

for

i<n

are contractible. Note the third condition is only included optionally by some authors.

Existence

Postnikov systems exist on connected CW complexes,[1] and there is a weak homotopy-equivalence between

X

and its inverse limit, so

X\simeq\varprojlim{}Xn

,showing that

X

is a CW approximation of its inverse limit. They can be constructed on a CW complex by iteratively killing off homotopy groups. If we have a map

f:Sn\toX

representing a homotopy class

[f]\in\pin(X)

, we can take the pushout along the boundary map

Sn\toen+1

, killing off the homotopy class. For

Xm

this process can be repeated for all

n>m

, giving a space which has vanishing homotopy groups

\pin(Xm)

. Using the fact that

Xn-1

can be constructed from

Xn

by killing off all homotopy maps

Sn\toXn

, we obtain a map

Xn\toXn-1

.

Main property

One of the main properties of the Postnikov tower, which makes it so powerful to study while computing cohomology, is the fact the spaces

Xn

are homotopic to a CW complex

ak{X}n

which differs from

X

only by cells of dimension

\geqn+2

.

Homotopy classification of fibrations

The sequence of fibrations

pn:Xn\toXn-1

[2] have homotopically defined invariants, meaning the homotopy classes of maps

pn

, give a well defined homotopy type

[X]\in\operatorname{Ob}(hTop)

. The homotopy class of

pn

comes from looking at the homotopy class of the classifying map for the fiber

K(\pin(X),n)

. The associated classifying map is

Xn-1\toB(K(\pin(X),n))\simeqK(\pin(X),n+1)

,hence the homotopy class

[pn]

is classified by a homotopy class

[pn]\in[Xn-1,K(\pin(X),n+1)]\congHn+1(Xn-1,\pin(X))

called the nth Postnikov invariant of

X

, since the homotopy classes of maps to Eilenberg-Maclane spaces gives cohomology with coefficients in the associated abelian group.

Fiber sequence for spaces with two nontrivial homotopy groups

One of the special cases of the homotopy classification is the homotopy class of spaces

X

such that there exists a fibration

K(A,n)\toX\to\pi1(X)

giving a homotopy type with two non-trivial homotopy groups,

\pi1(X)=G

, and

\pin(X)=A

. Then, from the previous discussion, the fibration map

BG\toK(A,n+1)

gives a cohomology class in

Hn+1(BG,A)

,which can also be interpreted as a group cohomology class. This space

X

can be considered a higher local system.

Examples of Postnikov towers

Postnikov tower of a K(G, n)

One of the conceptually simplest cases of a Postnikov tower is that of the Eilenberg–Maclane space

K(G,n)

. This gives a tower with

\begin{matrix} Xi\simeq*&fori<n\\ Xi\simeqK(G,n)&fori\geqn \end{matrix}

Postnikov tower of S2

The Postnikov tower for the sphere

S2

is a special case whose first few terms can be understood explicitly. Since we have the first few homotopy groups from the simply connectedness of

S2

, degree theory of spheres, and the Hopf fibration, giving
2)
\pi
k(S

\simeq

3)
\pi
k(S
for

k\geq3

, hence
2)
\begin{matrix} \pi
1(S

=&0

2)
\\ \pi
2(S

=&\Z

2)
\\ \pi
3(S

=&\Z

2)
\\ \pi
4(S

=&\Z/2. \end{matrix}

Then,

X2=

2
S
2

=K(\Z,2)

, and

X3

comes from a pullback sequence

\begin{matrix} X3&\to&*\\ \downarrow&&\downarrow\\ X2&\to&K(\Z,4),\end{matrix}

which is an element in

[p3]\in[K(\Z,2),K(\Z,4)]\congH4(CPinfty)=\Z

.If this was trivial it would imply

X3\simeqK(\Z,2) x K(\Z,3)

. But, this is not the case! In fact, this is responsible for why strict infinity groupoids don't model homotopy types.[3] Computing this invariant requires more work, but can be explicitly found.[4] This is the quadratic form

x\mapstox2

on

\Z\to\Z

coming from the Hopf fibration

S3\toS2

. Note that each element in

H4(CPinfty)

gives a different homotopy 3-type.

Homotopy groups of spheres

Sn

we can use the Hurewicz theorem to show each
n
S
i
is contractible for

i<n

, since the theorem implies that the lower homotopy groups are trivial. Recall there is a spectral sequence for any Serre fibration, such as the fibration

K(\pin+1(X),n+1)\simeqFn+1\to

n
S
n+1

\to

n
S
n

\simeqK(\Z,n)

.

We can then form a homological spectral sequence with

E2

-terms
2
E
p,q

=Hp\left(K(\Z,n),Hq\left(K\left(\pin+1\left(Sn\right),n+1\right)\right)\right)

.

And the first non-trivial map to

\pin+1\left(Sn\right)

,
n+1
d
0,n+1

:Hn+2(K(\Z,n))\toH0\left(K(\Z,n),Hn+1\left(K\left(\pin+1\left(Sn\right),n+1\right)\right)\right)

,

equivalently written as

n+1
d
0,n+1

:Hn+2(K(\Z,n))\to\pin+1\left(Sn\right)

.

If it's easy to compute

Hn+1

n
\left(S
n+1

\right)

and

Hn+2

n
\left(S
n+2

\right)

, then we can get information about what this map looks like. In particular, if it's an isomorphism, we obtain a computation of

\pin+1\left(Sn\right)

. For the case

n=3

, this can be computed explicitly using the path fibration for

K(\Z,3)

, the main property of the Postnikov tower for

ak{X}4\simeqS3\cup\{cellsofdimension\geq6\}

(giving

H4(X4)=H5(X4)=0

, and the universal coefficient theorem giving
3\right)
\pi
4\left(S

=\Z/2

. Moreover, because of the Freudenthal suspension theorem this actually gives the stable homotopy group
S
\pi
1
since

\pin+k\left(Sn\right)

is stable for

n\geqk+2

.

Note that similar techniques can be applied using the Whitehead tower (below) for computing

3\right)
\pi
4\left(S
and
3\right)
\pi
5\left(S
, giving the first two non-trivial stable homotopy groups of spheres.

Postnikov towers of spectra

In addition to the classical Postnikov tower, there is a notion of Postnikov towers in stable homotopy theory constructed on spectra[6] pg 85-86.

Definition

For a spectrum

E

a postnikov tower of

E

is a diagram in the homotopy category of spectra,

Ho(bf{Spectra})

, given by

\toE(2)\xrightarrow{p2}E(1)\xrightarrow{p1}E(0)

,with maps

\taun:E\toE(n)

commuting with the

pn

maps. Then, this tower is a Postnikov tower if the following two conditions are satisfied:
S
\pi
i

\left(E(n)\right)=0

for

i>n

,

\left(\taun\right)*:

S
\pi
i

(E)\to

S
\pi
i

\left(E(n)\right)

is an isomorphism for

i\leqn

,

where

S
\pi
i
are stable homotopy groups of a spectrum. It turns out every spectrum has a Postnikov tower and this tower can be constructed using a similar kind of inductive procedure as the one given above.

Whitehead tower

Given a CW complex

X

, there is a dual construction to the Postnikov tower called the Whitehead tower. Instead of killing off all higher homotopy groups, the Whitehead tower iteratively kills off lower homotopy groups. This is given by a tower of CW complexes,

\toX3\toX2\toX1\toX

,where
  1. The lower homotopy groups are zero, so

\pii(Xn)=0

for

i\leqn

.
  1. The induced map

\pii:\pii(Xn)\to\pii(X)

is an isomorphism for

i>n

.
  1. The maps

Xn\toXn-1

are fibrations with fiber

K(\pin(X),n-1)

.

Implications

Notice

X1\toX

is the universal cover of

X

since it is a covering space with a simply connected cover. Furthermore, each

Xn\toX

is the universal

n

-connected cover of

X

.

Construction

The spaces

Xn

in the Whitehead tower are constructed inductively. If we construct a

K\left(\pin+1(X),n+1\right)

by killing off the higher homotopy groups in

Xn

,[7] we get an embedding

Xn\toK(\pin+1(X),n+1)

. If we let

Xn+1=\left\{f\colonI\toK\left(\pin+1(X),n+1\right):f(0)=pandf(1)\inXn\right\}

for some fixed basepoint

p

, then the induced map

Xn+1\toXn

is a fiber bundle with fiber homeomorphic to

\OmegaK\left(\pin+1(X),n+1\right)\simeqK\left(\pin+1(X),n\right)

,and so we have a Serre fibration

K\left(\pin+1(X),n\right)\toXn\toXn-1

.

Using the long exact sequence in homotopy theory, we have that

\pii(Xn)=\pii\left(Xn-1\right)

for

i\geqn+1

,

\pii(Xn)=\pii(Xn-1)=0

for

i<n-1

, and finally, there is an exact sequence

0\to\pin+1\left(Xn+1)\to\pin+1(Xn\right)l{\overset{\partial}{ → }}\pinK\left(\pin+1(X),n\right)\to\pin\left(Xn+1\right)\to0

,where if the middle morphism is an isomorphism, the other two groups are zero. This can be checked by looking at the inclusion

Xn\toK(\pin+1(X),n+1)

and noting that the Eilenberg–Maclane space has a cellular decomposition

Xn-1\cup\{cellsofdimension\geqn+2\}

; thus,

\pin+1\left(Xn\right)\cong\pin+1\left(K\left(\pin+1(X),n+1\right)\right)\cong\pin\left(K\left(\pin+1(X),n\right)\right)

,

giving the desired result.

As a homotopy fiber

Another way to view the components in the Whitehead tower is as a homotopy fiber. If we take

Hofiber(\phin:X\toXn)

from the Postnikov tower, we get a space

Xn

which has
n)
\pi
k(X

=\begin{cases} \pik(X)&k>n\\ 0&k\leqn \end{cases}

Whitehead tower of spectra

The dual notion of the Whitehead tower can be defined in a similar manner using homotopy fibers in the category of spectra. If we let

E\langlen\rangle=\operatorname{Hofiber}\left(\taun:E\toE(n)\right)

then this can be organized in a tower giving connected covers of a spectrum. This is a widely used construction[8] [9] [10] in bordism theory because the coverings of the unoriented cobordism spectrum

MO

gives other bordism theories

\begin{align} MString&=MO\langle8\rangle\\ MSpin&=MO\langle4\rangle\\ MSO&=MO\langle2\rangle \end{align}

such as string bordism.

Whitehead tower and string theory

In Spin geometry the

\operatorname{Spin}(n)

group is constructed as the universal cover of the Special orthogonal group

\operatorname{SO}(n)

, so

\Z/2\to\operatorname{Spin}(n)\toSO(n)

is a fibration, giving the first term in the Whitehead tower. There are physically relevant interpretations for the higher parts in this tower, which can be read as

\to\operatorname{Fivebrane}(n)\to\operatorname{String}(n)\to\operatorname{Spin}(n)\to\operatorname{SO}(n)

where

\operatorname{String}(n)

is the

3

-connected cover of

\operatorname{SO}(n)

called the string group, and

\operatorname{Fivebrane}(n)

is the

7

-connected cover called the fivebrane group.[11] [12]

See also

References

Notes and References

  1. Book: Hatcher, Allen. Allen Hatcher. Algebraic Topology.
  2. Kahn. Donald W.. 1963-03-01. Induced maps for Postnikov systems. Transactions of the American Mathematical Society. 107. 3. 432–450. 10.1090/s0002-9947-1963-0150777-x. 0002-9947. free.
  3. Simpson. Carlos. Carlos Simpson. 1998-10-09. Homotopy types of strict 3-groupoids. math/9810059.
  4. Eilenberg. Samuel. Samuel Eilenberg. MacLane. Saunders. Saunders MacLane. 1954. On the Groups

    H(\Pi,n)

    , III: Operations and Obstructions. 1969849. Annals of Mathematics. 60. 3. 513–557. 10.2307/1969849. 0003-486X.
  5. Web site: Laurențiu-George. Maxim. Spectral sequences and homotopy groups of spheres. live. https://web.archive.org/web/20170519125745/https://www.math.wisc.edu/~maxim/753f13w7.pdf. 19 May 2017.
  6. Book: On Thom Spectra, Orientability, and Cobordism. 1998. Springer. 978-3-540-62043-3. Springer Monographs in Mathematics. Berlin, Heidelberg. en. 10.1007/978-3-540-77751-9.
  7. Web site: Lecture Notes on Homotopy Theory and Applications. Laurențiu. Maxim. 66. live. https://web.archive.org/web/20200216062602/https://www.math.wisc.edu/~maxim/754notes.pdf. 16 February 2020.
  8. Hill. Michael A.. 2009. The string bordism of BE8 and BE8 × BE8 through dimension 14. Illinois Journal of Mathematics. EN. 53. 1. 183–196. 10.1215/ijm/1264170845. 0019-2082. free.
  9. 2014-12-01. Secondary invariants for string bordism and topological modular forms. Bulletin des Sciences Mathématiques. en. 138. 8. 912–970. 10.1016/j.bulsci.2014.05.002. 0007-4497. free. Bunke. Ulrich. Naumann. Niko.
  10. Book: Szymik, Markus. 2019. String bordism and chromatic characteristics. Daniel G. Davis. Hans-Werner Henn. J. F. Jardine. Mark W. Johnson. Charles Rezk. Homotopy Theory: Tools and Applications. Contemporary Mathematics. 729. 239–254. 10.1090/conm/729/14698. 1312.4658. 9781470442446. 56461325.
  11. Web site: Mathematical physics – Physical application of Postnikov tower, String(n) and Fivebrane(n). Physics Stack Exchange. 2020-02-16.
  12. Web site: at.algebraic topology – What do Whitehead towers have to do with physics?. MathOverflow. 2020-02-16.