A
x\inDom(A)
\langleAx,x\rangle\inR
\langleAx,x\rangle\geq0
Dom(A)
A
A\ge0
A>0
\langleAx,x\rangle>0,
x\inDom(A)\setminus\{0\}
Many authors define a positive operator
A
In physics (specifically quantum mechanics), such operators represent quantum states, via the density matrix formalism.
See main article: Cauchy–Schwarz inequality. Take the inner product
\langle ⋅ , ⋅ \rangle
A
\langleAx,y\rangle=\langlex,Ay\rangle
\begin{align} \langleA(λx+\muy),λx+\muy\rangle =|λ|2\langleAx,x\rangle+λ*\mu\langleAx,y\rangle+λ\mu*\langleAy,x\rangle+|\mu|2\langleAy,y\rangle\\[1mm] =|λ|2\langleAx,x\rangle+λ*\mu\langleAx,y\rangle+λ\mu*(\langleAx,y\rangle)*+|\mu|2\langleAy,y\rangle \end{align}
λ
\mu
\left|\langleAx,y\rangle\right|2\leq\langleAx,x\rangle\langleAy,y\rangle.
ImA\perpKerA.
A
\langleAx,x\rangle=0,
Ax=0.
For
x,y\inDomA,
\begin{align} \langleAx,y\rangle=
1 | |
4 |
({}&\langleA(x+y),x+y\rangle-\langleA(x-y),x-y\rangle\\[1mm] &{}-i\langleA(x+iy),x+iy\rangle+i\langleA(x-iy),x-iy\rangle) \end{align}
\langleAx,x\rangle=\langlex,Ax\rangle,
\langleAx,y\rangle=\langlex,Ay\rangle,
A
In contrast with the complex case, a positive-semidefinite operator on a real Hilbert space
HR
A:R2\toR2
\varphi\in(-\pi/2,\pi/2).
\langleAx,x\rangle=\|Ax\|\|x\|\cos\varphi>0,
A*=A-1 ≠ A,
A
The symmetry of
A
DomA\subseteqDomA*
A=
*| | |
A | |
Dom(A) |
.
A
DomA=DomA*.
HC=DomA\subseteqDomA*,
A
A
This property does not hold on
HR.
A natural partial ordering of self-adjoint operators arises from the definition of positive operators. Define
B\geqA
A
B
B-A\geq0
It can be seen that a similar result as the Monotone convergence theorem holds for monotone increasing, bounded, self-adjoint operators on Hilbert spaces.[1]
HC
\calS
\rho
HC
Trace\rho=1.
\calS
\rho\in{\calS}
\psi\inHC,
\|\psi\|=1,
P\psi
\psi
\psi\inHC,
HC).