Positive-real functions, often abbreviated to PR function or PRF, are a kind of mathematical function that first arose in electrical network synthesis. They are complex functions, Z(s), of a complex variable, s. A rational function is defined to have the PR property if it has a positive real part and is analytic in the right half of the complex plane and takes on real values on the real axis.
In symbols the definition is,
\begin{align} &\Re[Z(s)]>0 if \Re(s)>0\\ &\Im[Z(s)]=0 if \Im(s)=0 \end{align}
In electrical network analysis, Z(s) represents an impedance expression and s is the complex frequency variable, often expressed as its real and imaginary parts;
s=\sigma+i\omega
in which terms the PR condition can be stated;
\begin{align} &\Re[Z(s)]>0 if \sigma>0\\ &\Im[Z(s)]=0 if \omega=0 \end{align}
The importance to network analysis of the PR condition lies in the realisability condition. Z(s) is realisable as a one-port rational impedance if and only if it meets the PR condition. Realisable in this sense means that the impedance can be constructed from a finite (hence rational) number of discrete ideal passive linear elements (resistors, inductors and capacitors in electrical terminology).[1]
The term positive-real function was originally defined by Otto Brune to describe any function Z(s) which[2]
Many authors strictly adhere to this definition by explicitly requiring rationality,[3] or by restricting attention to rational functions, at least in the first instance.[4] However, a similar more general condition, not restricted to rational functions had earlier been considered by Cauer, and some authors ascribe the term positive-real to this type of condition, while others consider it to be a generalization of the basic definition.
The condition was first proposed by Wilhelm Cauer (1926)[5] who determined that it was a necessary condition. Otto Brune (1931)[6] coined the term positive-real for the condition and proved that it was both necessary and sufficient for realisability.
A couple of generalizations are sometimes made, with intention of characterizing the immittance functions of a wider class of passive linear electrical networks.
The impedance Z(s) of a network consisting of an infinite number of components (such as a semi-infinite ladder), need not be a rational function of s, and in particular may have branch points in the left half s-plane. To accommodate such functions in the definition of PR, it is therefore necessary to relax the condition that the function be real for all real s, and only require this when s is positive. Thus, a possibly irrational function Z(s) is PR if and only if
Some authors start from this more general definition, and then particularize it to the rational case.
Linear electrical networks with more than one port may be described by impedance or admittance matrices. So by extending the definition of PR to matrix-valued functions, linear multi-port networks which are passive may be distinguished from those that are not. A possibly irrational matrix-valued function Z(s) is PR if and only if