Porosimetry is an analytical technique used to determine various quantifiable aspects of a material's porous structure, such as pore diameter, total pore volume, surface area, and bulk and absolute densities.
The technique involves the intrusion of a non-wetting liquid (often mercury) at high pressure into a material through the use of a porosimeter. The pore size can be determined based on the external pressure needed to force the liquid into a pore against the opposing force of the liquid's surface tension.
A force balance equation known as Washburn's equation for the above material having cylindrical pores is given as:[1]
PL-PG=-
4\sigma\cos\theta | |
DP |
PL
PG
\sigma
\theta
DP
Since the technique is usually performed within a vacuum, the initial gas pressure is zero. The contact angle of mercury with most solids is between 135° and 142°, so an average of 140° can be taken without much error. The surface tension of mercury at 20 °C under vacuum is 480 mN/m. With the various substitutions, the equation becomes:
DP=
1470 kPa ⋅ \mum | |
PL |
As pressure increases, so does the cumulative pore volume. From the cumulative pore volume, one can find the pressure and pore diameter where 50% of the total volume has been added to give the median pore diameter.