Popoviciu's inequality on variances explained

In probability theory, Popoviciu's inequality, named after Tiberiu Popoviciu, is an upper bound on the variance σ2 of any bounded probability distribution. Let M and m be upper and lower bounds on the values of any random variable with a particular probability distribution. Then Popoviciu's inequality states:[1]

\sigma2\le

14
(

M-m)2.

This equality holds precisely when half of the probability is concentrated at each of the two bounds.

Sharma et al. have sharpened Popoviciu's inequality:[2]

{\sigma2+\left(

Thirdcentralmoment
2\sigma2

\right)2}\le

14
(M

-m)2.

If one additionally assumes knowledge of the expectation, then the stronger Bhatia - Davis inequality holds

\sigma2\le(M-\mu)(\mu-m)

where μ is the expectation of the random variable.[3]

In the case of an independent sample of n observations from a bounded probability distribution, the von Szokefalvi Nagy inequality[4] gives a lower bound to the variance of the sample mean:

\sigma2\ge

(M-m)2
2n

.

Proof via the Bhatia - Davis inequality

Let

A

be a random variable with mean

\mu

, variance

\sigma2

, and

\Pr(m\leqA\leqM)=1

. Then, since

m\leqA\leqM

,

0\leqE[(M-A)(A-m)]=-E[A2]-mM+(m+M)\mu

.

Thus,

\sigma2=E[A2]-\mu2\leq-mM+(m+M)\mu-\mu2=(M-\mu)(\mu-m)

.

Now, applying the Inequality of arithmetic and geometric means,

ab\leq\left(

a+b
2

\right)2

, with

a=M-\mu

and

b=\mu-m

, yields the desired result:

\sigma2\leq(M-\mu)(\mu-m)\leq

\left(M-m\right)2
4
.

Notes and References

  1. Popoviciu, T.. 1935. Sur les équations algébriques ayant toutes leurs racines réelles. Mathematica (Cluj) . 9. 129–145.
  2. Sharma, R., Gupta, M., Kapoor, G.. 2010. Some better bounds on the variance with applications. Journal of Mathematical Inequalities. 4. 3. 355–363 . 10.7153/jmi-04-32 . free.
  3. Bhatia. Rajendra. Davis, Chandler. April 2000. A Better Bound on the Variance. American Mathematical Monthly. Mathematical Association of America. 107. 4. 353–357. 10.2307/2589180. 0002-9890. 2589180. Chandler Davis.
  4. Über algebraische Gleichungen mit lauter reellen Wurzeln. Jahresbericht der Deutschen Mathematiker-Vereinigung. 27. 37–43. 1918. Nagy. Julius.