In mathematics, the Pontryagin product, introduced by, is a product on the homology of a topological space induced by a product on the topological space. Special cases include the Pontryagin product on the homology of an abelian group, the Pontryagin product on an H-space, and the Pontryagin product on a loop space.
f:\Deltam\toX
g:\Deltan\toY
f x g:\Deltam x \Deltan\toX x Y
X x Y
\Deltam x \Deltan
Hm(X;R) ⊗ Hn(Y;R)\toHm+n(X x Y;R)
by proving that if
f
g
f x g
f
g
X
\mu:X x X\toX
H*(X;R) ⊗ H*(X;R)\xrightarrow[]{ x }H*(X x X;R)\xrightarrow[]{\mu*}H*(X;R)
where the first map is the cross product defined above and the second map is given by the multiplication
X x X\toX
H*(X;R)=
infty | |
oplus | |
n=0 |
Hn(X;R)
. Brown . Kenneth S. . Kenneth Brown (mathematician) . Cohomology of groups . . Berlin, New York . . 978-0-387-90688-1 . 672956 . 1982 . 87.
. Hatcher . Hatcher . Allen Hatcher . Algebraic topology . . Cambridge . 2001 . 978-0-521-79160-1.