Polydrafter Explained

In recreational mathematics, a polydrafter is a polyform with a 30°–60°–90° right triangle as the base form. This triangle is also called a drafting triangle, hence the name.[1] This triangle is also half of an equilateral triangle, and a polydrafter's cells must consist of halves of triangles in the triangular tiling of the plane; consequently, when two drafters share an edge that is the middle of their three edge lengths, they must be reflections rather than rotations of each other. Any contiguous subset of halves of triangles in this tiling is allowed, so unlike most polyforms, a polydrafter may have cells joined along unequal edges: a hypotenuse and a short leg.

History

Polydrafters were invented by Christopher Monckton, who used the name polydudes for polydrafters that have no cells attached only by the length of a short leg. Monckton's Eternity Puzzle was composed of 209 12-dudes.[2]

The term polydrafter was coined by Ed Pegg Jr., who also proposed as a puzzle the task of fitting the 14 tridrafters - all possible clusters of three drafters - into a trapezoid whose sides are 2, 3, 5, and 3 times the length of the hypotenuse of a drafter.[3]

Extended polydrafters

An extended polydrafter is a variant in which the drafter cells cannot all conform to the triangle (polyiamond) grid.The cells are still joined at short legs, long legs, hypotenuses and half-hypotenuses.See the Logelium link below.

Enumerating polydrafters

Like polyominoes, polydrafters can be enumerated in two ways, depending on whether chiral pairs of polydrafters are counted as one polydrafter or two.

nName of
n-polydrafter
Number of n-polydrafters

(reflections counted separately)

Number
of free
n-polydudes
free
one-sided
1monodrafter121
2didrafter683
3tridrafter14281
4tetradrafter641169
5pentadrafter23747415
6hexadrafter1024200159

With two or more cells, the numbers are greater if extended polydrafters are included. For example, the number of didrafters rises from 6 to 13. See .

See also

External links

Notes and References

  1. .
  2. .
  3. .