Polydivisible number explained

In mathematics a polydivisible number (or magic number) is a number in a given number base with digits abcde... that has the following properties:

  1. Its first digit a is not 0.
  2. The number formed by its first two digits ab is a multiple of 2.
  3. The number formed by its first three digits abc is a multiple of 3.
  4. The number formed by its first four digits abcd is a multiple of 4.
  5. etc.

Definition

Let

n

be a positive integer, and let

k=\lfloorlogb{n}\rfloor+1

be the number of digits in n written in base b. The number n is a polydivisible number if for all

1\leqi\leqk

,
\left\lfloorn
bk

\right\rfloor\equiv0\pmodi

.
Example

For example, 10801 is a seven-digit polydivisible number in base 4, as

\left\lfloor10801
47

\right\rfloor=\left\lfloor

10801
4096

\right\rfloor=2\equiv0\pmod1,

\left\lfloor10801
47

\right\rfloor=\left\lfloor

10801
1024

\right\rfloor=10\equiv0\pmod2,

\left\lfloor10801
47

\right\rfloor=\left\lfloor

10801
256

\right\rfloor=42\equiv0\pmod3,

\left\lfloor10801
47

\right\rfloor=\left\lfloor

10801
64

\right\rfloor=168\equiv0\pmod4,

\left\lfloor10801
47

\right\rfloor=\left\lfloor

10801
16

\right\rfloor=675\equiv0\pmod5,

\left\lfloor10801
47

\right\rfloor=\left\lfloor

10801
4

\right\rfloor=2700\equiv0\pmod6,

\left\lfloor10801
47

\right\rfloor=\left\lfloor

10801
1

\right\rfloor=10801\equiv0\pmod7.

Enumeration

For any given base

b

, there are only a finite number of polydivisible numbers.

Maximum polydivisible number

The following table lists maximum polydivisible numbers for some bases b, where represent digit values 10 to 35.

Base

b

Maximum polydivisible number Number of base-b digits
2
6
7
10
25
28

Estimate for Fb(n) and Σ(b)

Let

n

be the number of digits. The function

Fb(n)

determines the number of polydivisible numbers that has

n

digits in base

b

, and the function

\Sigma(b)

is the total number of polydivisible numbers in base

b

.

If

k

is a polydivisible number in base

b

with

n-1

digits, then it can be extended to create a polydivisible number with

n

digits if there is a number between

bk

and

b(k+1)-1

that is divisible by

n

. If

n

is less or equal to

b

, then it is always possible to extend an

n-1

digit polydivisible number to an

n

-digit polydivisible number in this way, and indeed there may be more than one possible extension. If

n

is greater than

b

, it is not always possible to extend a polydivisible number in this way, and as

n

becomes larger, the chances of being able to extend a given polydivisible number become smaller. On average, each polydivisible number with

n-1

digits can be extended to a polydivisible number with

n

digits in
b
n
different ways. This leads to the following estimate for

Fb(n)

:

Fb(n)(b-1)

bn-1
n!

.

Summing over all values of n, this estimate suggests that the total number of polydivisible numbers will be approximately

\Sigma(b)

b-1
b

(eb-1)

Base

b

\Sigma(b)

Est. of

\Sigma(b)

Percent Error
2
e2-1
2

3.1945

59.7%
15
2
3

(e3-1)12.725

-15.1%
37
3
4

(e4-1)40.199

8.64%
127
4
5

(e5-1)117.93

−7.14%
20456
9
10

(e10-1)19823

-3.09%

Specific bases

All numbers are represented in base

b

, using A−Z to represent digit values 10 to 35.

Base 2

Length nF2(n)Est. of F2(n)Polydivisible numbers
1 1 1 1
2 1 1 10

Base 3

Length nF3(n)Est. of F3(n)Polydivisible numbers
1 2 2 1, 2
2 3 3 11, 20, 22
3 3 3 110, 200, 220
4 3 2 1100, 2002, 2200
5 2 1 11002, 20022
6 2 1 110020, 200220
7 0 0

\varnothing

Base 4

Length nF4(n)Est. of F4(n)Polydivisible numbers
1 3 3 1, 2, 3
2 6 6 10, 12, 20, 22, 30, 32
3 8 8 102, 120, 123, 201, 222, 300, 303, 321
4 8 8 1020, 1200, 1230, 2010, 2220, 3000, 3030, 3210
5 7 6 10202, 12001, 12303, 20102, 22203, 30002, 32103
6 4 4 120012, 123030, 222030, 321030
7 1 2 2220301
8 0 1

\varnothing

Base 5

The polydivisible numbers in base 5 are

1, 2, 3, 4, 11, 13, 20, 22, 24, 31, 33, 40, 42, 44, 110, 113, 132, 201, 204, 220, 223, 242, 311, 314, 330, 333, 402, 421, 424, 440, 443, 1102, 1133, 1322, 2011, 2042, 2200, 2204, 2231, 2420, 2424, 3113, 3140, 3144, 3302, 3333, 4022, 4211, 4242, 4400, 4404, 4431, 11020, 11330, 13220, 20110, 20420, 22000, 22040, 22310, 24200, 24240, 31130, 31400, 31440, 33020, 33330, 40220, 42110, 42420, 44000, 44040, 44310, 110204, 113300, 132204, 201102, 204204, 220000, 220402, 223102, 242000, 242402, 311300, 314000, 314402, 330204, 333300, 402204, 421102, 424204, 440000, 440402, 443102, 1133000, 1322043, 2011021, 2042040, 2204020, 2420003, 2424024, 3113002, 3140000, 3144021, 4022042, 4211020, 4431024, 11330000, 13220431, 20110211, 20420404, 24200031, 31400004, 31440211, 40220422, 42110202, 44310242, 132204314, 201102110, 242000311, 314000044, 402204220, 443102421, 1322043140, 2011021100, 3140000440, 4022042200

The smallest base 5 polydivisible numbers with n digits are

1, 11, 110, 1102, 11020, 110204, 1133000, 11330000, 132204314, 1322043140, none...

The largest base 5 polydivisible numbers with n digits are

4, 44, 443, 4431, 44310, 443102, 4431024, 44310242, 443102421, 4022042200, none...

The number of base 5 polydivisible numbers with n digits are

4, 10, 17, 21, 21, 21, 13, 10, 6, 4, 0, 0, 0...

Length nF5(n)Est. of F5(n)
1 4 4
2 10 10
3 17 17
4 21 21
5 21 21
6 21 17
7 13 12
8 10 8
9 6 4
10 4 2

Base 10

The polydivisible numbers in base 10 are

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 102, 105, 108, 120, 123, 126, 129, 141, 144, 147, 162, 165, 168, 180, 183, 186, 189, 201, 204, 207, 222, 225, 228, 243, 246, 249, 261, 264, 267, 282, 285, 288...

The smallest base 10 polydivisible numbers with n digits are

1, 10, 102, 1020, 10200, 102000, 1020005, 10200056, 102000564, 1020005640, 10200056405, 102006162060, 1020061620604, 10200616206046, 102006162060465, 1020061620604656, 10200616206046568, 108054801036000018, 1080548010360000180, 10805480103600001800, ...

The largest base 10 polydivisible numbers with n digits are

9, 98, 987, 9876, 98765, 987654, 9876545, 98765456, 987654564, 9876545640, 98765456405, 987606963096, 9876069630960, 98760696309604, 987606963096045, 9876062430364208, 98485872309636009, 984450645096105672, 9812523240364656789, 96685896604836004260, ...

The number of base 10 polydivisible numbers with n digits are

9, 45, 150, 375, 750, 1200, 1713, 2227, 2492, 2492, 2225, 2041, 1575, 1132, 770, 571, 335, 180, 90, 44, 18, 12, 6, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...

Length nF10(n)Est. of F10(n)
199
24545
3150150
4375375
5750750
612001250
717131786
822272232
924922480
1024922480
1122252255
1220411879
1315751445
1411321032
15770688
16571430
17335253
18180141
199074
204437
211817
22128
2363
2431
2511

Programming example

The example below searches for polydivisible numbers in Python. def find_polydivisible(base: int) -> list[int]: """Find polydivisible number.""" numbers = [] previous = [i for i in range(1, base)] new = [] digits = 2 while not previous

[]: numbers.append(previous) for n in previous: for j in range(0, base): number = n * base + j if number % digits

0: new.append(number) previous = new new = [] digits = digits + 1 return numbers

Related problems

Polydivisible numbers represent a generalization of the following well-known problem in recreational mathematics:

Arrange the digits 1 to 9 in order so that the first two digits form a multiple of 2, the first three digits form a multiple of 3, the first four digits form a multiple of 4 etc. and finally the entire number is a multiple of 9.

The solution to the problem is a nine-digit polydivisible number with the additional condition that it contains the digits 1 to 9 exactly once each. There are 2,492 nine-digit polydivisible numbers, but the only one that satisfies the additional condition is

381 654 729

Other problems involving polydivisible numbers include:

48 000 688 208 466 084 040

30 000 600 003

External links