Poisson limit theorem explained

In probability theory, the law of rare events or Poisson limit theorem states that the Poisson distribution may be used as an approximation to the binomial distribution, under certain conditions.[1] The theorem was named after Siméon Denis Poisson (1781 - 1840). A generalization of this theorem is Le Cam's theorem.

Theorem

Let

pn

be a sequence of real numbers in

[0,1]

such that the sequence

npn

converges to a finite limit

λ

. Then:

\limn\to{n\choosek}

k
p
n
n-k
(1-p
n)

=e

λk
k!

First proof

Assume

λ>0

(the case

λ=0

is easier). Then

\begin{align} \lim\limitsn → infty{n\choosek}

k
p
n
n-k
(1-p
n)

&=\limn\toinfty

n(n-1)(n-2)...(n-k+1)\left(
k!
λ
n

(1+o(1))\right)k\left(1-

λ
n

(1+o(1))\right)n-k\\ &=\limn\toinfty

nk+O\left(nk-1\right)
k!
λk
nk

\left(1-

λ
n

(1+o(1))\right)n\left(1-

λ
n

(1+o(1))\right)-k\\ &=\limn\toinfty

λk\left(1-
k!
λ
n

(1+o(1))\right)n. \end{align}

Since

\limn\toinfty\left(1-

λ
n

(1+o(1))\right)n=e

this leaves

{n\choosek}pk(1-p)n-k\simeq

λke
k!

.

Alternative proof

Using Stirling's approximation, it can be written:

\begin{align} {n\choosek}pk(1-p)n-k&=

n!
(n-k)!k!

pk(1-p)n-k\&\simeq

\sqrt{2\pin
\left(n
e

\right)n}{\sqrt{2\pi\left(n-k\right)}\left(

n-k
e

\right)n-kk!}pk(1-p)n-k\&=\sqrt{

n
n-k
}\fracp^k (1-p)^.\end

Letting

n\toinfty

and

np=λ

:

\begin{align} {n\choosek}pk(1-p)n-k&\simeq

nnpk(1-p)n-ke-k
\left(n-k\right)n-kk!

\\&=

n\left(λ
n
n\right)k
\left(1-λ
n
\right)n-ke-k
n-k
n
\left(1-k
n
\right)n-kk!

\\&=

k
λ
\left(1-λ
n
\right)n-ke-k
\left(1-k\right)n-kk!
n

\&\simeq

k
λ
\left(1-λ
n
\right)ne-k
\left(1-k\right)nk!
n

. \end{align}

As

n\toinfty

,
\left(1-x
n

\right)n\toe-x

so:

\begin{align} {n\choosek}pk(1-p)n-k&\simeq

λkee-k
e-kk!

\\&=

λke
k!

\end{align}

Ordinary generating functions

It is also possible to demonstrate the theorem through the use of ordinary generating functions of the binomial distribution:

G\operatorname{bin}(x;p,N) \equiv

N
\sum
k=0

\left[\binom{N}{k}pk(1-p)N-k\right]xk =[1+(x-1)p]N

by virtue of the binomial theorem. Taking the limit

Ninfty

while keeping the product

pN\equivλ

constant, it can be seen:

\limN → inftyG\operatorname{bin}(x;p,N) =\limN → infty\left[1+

λ(x-1)
N

\right]N =eλ(x-1)=

infty
\sum
k=0

\left[

eλk
k!

\right]xk

which is the OGF for the Poisson distribution. (The second equality holds due to the definition of the exponential function.)

See also

Notes and References

  1. Book: Papoulis, Athanasios. Pillai, S. Unnikrishna. Athanasios Papoulis. Unnikrishna Pillai. Probability, Random Variables, and Stochastic Processes. 4th.