Poincaré recurrence theorem explained

In mathematics and physics, the Poincaré recurrence theorem states that certain dynamical systems will, after a sufficiently long but finite time, return to a state arbitrarily close to (for continuous state systems), or exactly the same as (for discrete state systems), their initial state.

The Poincaré recurrence time is the length of time elapsed until the recurrence. This time may vary greatly depending on the exact initial state and required degree of closeness. The result applies to isolated mechanical systems subject to some constraints, e.g., all particles must be bound to a finite volume. The theorem is commonly discussed in the context of ergodic theory, dynamical systems and statistical mechanics. Systems to which the Poincaré recurrence theorem applies are called conservative systems.

The theorem is named after Henri Poincaré, who discussed it in 1890.[1] [2] A proof was presented by Constantin Carathéodory using measure theory in 1919.[3] [4]

Precise formulation

Any dynamical system defined by an ordinary differential equation determines a flow map f t mapping phase space on itself. The system is said to be volume-preserving if the volume of a set in phase space is invariant under the flow. For instance, all Hamiltonian systems are volume-preserving because of Liouville's theorem. The theorem is then: If a flow preserves volume and has only bounded orbits, then, for each open set, any orbit that intersects this open set intersects it infinitely often.[5]

Discussion of proof

The proof, speaking qualitatively, hinges on two premises:[6]

  1. A finite upper bound can be set on the total potentially accessible phase space volume. For a mechanical system, this bound can be provided by requiring that the system is contained in a bounded physical region of space (so that it cannot, for example, eject particles that never return) – combined with the conservation of energy, this locks the system into a finite region in phase space.
  2. The phase volume of a finite element under dynamics is conserved (for a mechanical system, this is ensured by Liouville's theorem).

Imagine any finite starting volume

D1

of the phase space and to follow its path under the dynamics of the system. The volume evolves through a "phase tube" in the phase space, keeping its size constant. Assuming a finite phase space, after some number of steps

k1

the phase tube must intersect itself. This means that at least a finite fraction

R1

of the starting volume is recurring.Now, consider the size of the non-returning portion

D2

of the starting phase volume – that portion that never returns to the starting volume. Using the principle just discussed in the last paragraph, we know that if the non-returning portion is finite, then a finite part

R2

of it must return after

k2

steps. But that would be a contradiction, since in a number

k3=

lcm

(k1,k2)

of step, both

R1

and

R2

would be returning, against the hypothesis that only

R1

was. Thus, the non-returning portion of the starting volume cannot be the empty set, i.e. all

D1

is recurring after some number of steps.

The theorem does not comment on certain aspects of recurrence which this proof cannot guarantee:

Formal statement

Let

(X,\Sigma,\mu)

be a finite measure space and let

f\colonX\toX

be a measure-preserving transformation. Below are two alternative statements of the theorem.

Theorem 1

For any

E\in\Sigma

, the set of those points

x

of

E

for which there exists

N\inN

such that

fn(x)\notinE

for all

n>N

has zero measure.

In other words, almost every point of

E

returns to

E

. In fact, almost every point returns infinitely often; i.e.

\mu\left(\{x\inE:thereexistsNsuchthat fn(x)\notinEforalln>N\}\right)=0.

Theorem 2

The following is a topological version of this theorem:

If

X

is a second-countable Hausdorff space and

\Sigma

contains the Borel sigma-algebra, then the set of recurrent points of

f

has full measure. That is, almost every point is recurrent.

More generally, the theorem applies to conservative systems, and not just to measure-preserving dynamical systems. Roughly speaking, one can say that conservative systems are precisely those to which the recurrence theorem applies.

Quantum mechanical version

For time-independent quantum mechanical systems with discrete energy eigenstates, a similar theorem holds. For every

\varepsilon>0

and

T0>0

there exists a time T larger than

T0

, such that

||\psi(T)\rangle-|\psi(0)\rangle|<\varepsilon

, where

|\psi(t)\rangle

denotes the state vector of the system at time t.[7] [8] [9]

The essential elements of the proof are as follows. The system evolves in time according to:

|\psi(t)\rangle=

infty
\sum
n=0

cn\exp(-iEnt)|\phin\rangle

where the

En

are the energy eigenvalues (we use natural units, so

\hbar=1

), and the

|\phin\rangle

are the energy eigenstates. The squared norm of the difference of the state vector at time

T

and time zero, can be written as:

||\psi(T)\rangle-|\psi(0)\rangle|2=

infty
2\sum
n=0
2
|c
n|

[1-\cos(EnT)]

We can truncate the summation at some n = N independent of T, because

infty
\sum
n=N+1
2
|c
n|

[1-\cos(EnT)]\leq

infty
2\sum
n=N+1
2
|c
n|

which can be made arbitrarily small by increasing N, as the summation

infty
\sum
n=0
2
|c
n|
, being the squared norm of the initial state, converges to 1.

The finite sum

N
\sum
n=0
2
|c
n|

[1-\cos(EnT)]

can be made arbitrarily small for specific choices of the time T, according to the following construction. Choose an arbitrary

\delta>0

, and then choose T such that there are integers

kn

that satisfies

|EnT-2\pikn|<\delta

,

for all numbers

0\leqn\leqN

. For this specific choice of T,

1-\cos(EnT)<

\delta2
2

.

As such, we have:

N
2\sum
n=0
2
|c
n|

[1-\cos(EnT)]<\delta2

N
\sum
n=0
2<\delta
|c
n|

2

.

The state vector

|\psi(T)\rangle

thus returns arbitrarily close to the initial state

|\psi(0)\rangle

.

See also

Further reading

External links

Notes and References

  1. Poincaré, H. . 1890 . Sur le problème des trois corps et les équations de la dynamique . Acta Math. . 13 . 1–270 .
  2. Poincaré, Œuvres VII, 262–490 (theorem 1 section 8)
  3. Carathéodory, C. . 1919 . Über den Wiederkehrsatz von Poincaré . Berl. Sitzungsber . 580–584.
  4. Carathéodory, Ges. math. Schr. IV, 296–301
  5. Barreira . Luis . Zambrini . Jean-Claude . XIVth International Congress on Mathematical Physics . . 978-981-256-201-2 . 10.1142/9789812704016_0039 . 2006 . Poincaré recurrence: Old and new . 415–422.
  6. Book: Gibbs, Josiah Willard . Josiah Willard Gibbs . Elementary Principles in Statistical Mechanics . 1902 . . New York, NY . Chapter X. Elementary Principles in Statistical Mechanics .
  7. P. . Bocchieri . A. . Loinger . Quantum Recurrence Theorem . . 107 . 2 . 337–338 . 1957 . 10.1103/PhysRev.107.337 . 1957PhRv..107..337B.
  8. I.C. . Percival . Almost Periodicity and the Quantal H theorem . . 2 . 2 . 235–239 . 1961 . 10.1063/1.1703705 . 1961JMP.....2..235P.
  9. L. S. . Schulman . Note on the quantum recurrence theorem . Phys. Rev. A . 18 . 5 . 2379–2380 . 1978 . 10.1103/PhysRevA.18.2379 . 1978PhRvA..18.2379S.