In the mathematics of coding theory, the Plotkin bound, named after Morris Plotkin, is a limit (or bound) on the maximum possible number of codewords in binary codes of given length n and given minimum distance d.
\{0,1\}
n | |
F | |
2 |
F2
d
C
d=minx,yd(x,y)
d(x,y)
x
y
A2(n,d)
n
d
Theorem (Plotkin bound):
i) If
d
2d>n
A2(n,d)\leq2\left\lfloor
d | |
2d-n |
\right\rfloor.
ii) If
d
2d+1>n
A2(n,d)\leq2\left\lfloor
d+1 | |
2d+1-n |
\right\rfloor.
iii) If
d
A2(2d,d)\leq4d.
iv) If
d
A2(2d+1,d)\leq4d+4
\left\lfloor~\right\rfloor
Let
d(x,y)
x
y
M
C
M
A2(n,d)
\sum | |
(x,y)\inC2,x ≠ y |
d(x,y)
On the one hand, there are
M
x
M-1
y
d(x,y)\geqd
x
y
x ≠ y
\sum | |
(x,y)\inC2,x ≠ y |
d(x,y)\geqM(M-1)d.
On the other hand, let
A
M x n
C
si
i
A
i
M-si
2
d(x,y)=d(y,x)
\sum(x,y)d(x,y)
\sum(x,y)d(x,y)=
n | |
\sum | |
i=1 |
2si(M-si).
The quantity on the right is maximized if and only if
si=M/2
i
si
\sum(x,y)d(x,y)\leq
1 | |
2 |
nM2.
Combining the upper and lower bounds for
\sum(x,y)d(x,y)
M(M-1)d\leq
1 | |
2 |
nM2
which given that
2d>n
M\leq
2d | |
2d-n |
.
Since
M
M\leq2\left\lfloor
d | |
2d-n |
\right\rfloor.
This completes the proof of the bound.