Plastic ratio explained

Rationality:irrational algebraic
Continued Fraction Linear:[1;3,12,1,1,3,2,3,2,4,2,141,80,...]
Continued Fraction Periodic:not periodic
Continued Fraction Finite:infinite
Algebraic:real root of

In mathematics, the plastic ratio is a geometrical proportion close to . Its true value is the real solution of the equation

The adjective plastic does not refer to the artificial material, but to the formative and sculptural qualities of this ratio, as in plastic arts.

Definition

Three quantities are in the plastic ratio if

a
b

=

b+c
a

=

b
c

.The ratio
a
b

is commonly denoted

Let and, then

\rho2=1+c\land\rho=1/c

\implies\rho2-1=\rho-1

.

\rho3-\rho-1=0.

The decimal expansion of the root begins as

1.324717957244746...

.

Solving the equation with Cardano's formula,

w1,2=\left(1\pm

1\sqrt{
3
23
3
} \right) /2

\rho=\sqrt[3]{w1}+\sqrt[3]{w2}

or, using the hyperbolic cosine,[1]

\rho=

2
\sqrt{3
} \cosh \left(\frac \operatorname \left(\frac \right) \right).

is the superstable fixed point of the iteration

x\gets(2x3+1)/(3x2-1)

.

The iteration

x\gets\sqrt{1+\tfrac{1}{x}}

results in the continued reciprocal square root

\rho=\sqrt{1+\cfrac{1}{\sqrt{1+\cfrac{1}{\sqrt{1+\cfrac{1}{\ddots}}}}}}

Dividing the defining trinomial

x3-x-1

by one obtains

x2+\rhox+1/\rho

, and the conjugate elements of are

x1,2=\left(-\rho\pmi\sqrt{3\rho2-4}\right)/2,

with

x1+x2=-\rho

and

x1x2=1/\rho.

Properties

The plastic ratio and golden ratio are the only morphic numbers: real numbers for which there exist natural numbers m and n such that

x+1=xm

and

x-1=x-n

.[2] Morphic numbers can serve as basis for a system of measure.

Properties of (m=3 and n=4) are related to those of (m=2 and n=1). For example, The plastic ratio satisfies the continued radical

\rho=\sqrt[3]{1+\sqrt[3]{1+\sqrt[3]{1+ … }}}

,while the golden ratio satisfies the analogous

\varphi=\sqrt{1+\sqrt{1+\sqrt{1+ … }}}

The plastic ratio can be expressed in terms of itself as the infinite geometric series

\rho=

infty
\sum
n=0

\rho-5n

and

\rho2=

infty
\sum
n=0

\rho-3n,

in comparison to the golden ratio identity

\varphi=

infty
\sum
n=0

\varphi-2n

and vice versa.Additionally,

1+\varphi-1+\varphi-2=2

, while
13
\sum
n=0

\rho-n=4.

For every integer

n

one has

\begin{align} \rhon&=\rhon-2+\rhon-3\\ &=\rhon-1+\rhon-5\\ &=\rhon-3+\rhon-4+\rhon-5.\end{align}

The algebraic solution of a reduced quintic equation can be written in terms of square roots, cube roots and the Bring radical. If

y=x5+x

then

x=BR(y)

. Since

\rho-5+\rho-1=1,\rho=1/BR(1).

Continued fraction pattern of a few low powers

\rho-1=[0;1,3,12,1,1,3,2,3,2,...]0.7549

\rho0=[1]

\rho1=[1;3,12,1,1,3,2,3,2,4,...]1.3247

\rho2=[1;1,3,12,1,1,3,2,3,2,...]1.7549

\rho3=[2;3,12,1,1,3,2,3,2,4,...]2.3247

\rho4=[3;12,1,1,3,2,3,2,4,2,...]3.0796

\rho5=[4;12,1,1,3,2,3,2,4,2,...]4.0796

...

\rho7=[7;6,3,1,1,4,1,1,2,1,1,...]7.1592

...

\rho9=[12;1,1,3,2,3,2,4,2,141,...]12.5635

1/\sqrt{\rho}

of the algebraic conjugates is smaller than 1, powers of generate almost integers. For example:

\rho29=3480.0002874...3480+1/3479.

After 29 rotation steps the phases of the inward spiraling conjugate pair  - initially close to  - nearly align with the imaginary axis.

The minimal polynomial of the plastic ratio

m(x)=x3-x-1

has discriminant

\Delta=-23

. The Hilbert class field of imaginary quadratic field

K=Q(\sqrt{\Delta})

can be formed by adjoining . With argument

\tau=(1+\sqrt{\Delta})/2

a generator for the ring of integers of, one has the special value of Dedekind eta quotient

\rho=

e\piη(\tau)
\sqrt{2

η(2\tau)}

.

Expressed in terms of the Weber-Ramanujan class invariant Gn

\rho=

ak{f
(

\sqrt{\Delta})}{\sqrt{2}}=

G23
\sqrt[4]{2

}

.[4]

Properties of the related Klein j-invariant result in near identity

e\pi

} \approx \left(\sqrt\,\rho \right)^ - 24 . The difference is .

kr*(r)

for has closed form expression

λ*(23)=\sin(\arcsin\left((\sqrt[4]{2}\rho)-12\right)/2)

(which is less than 1/3 the eccentricity of the orbit of Venus).

Van der Laan sequence

In his quest for perceptible clarity, the Dutch Benedictine monk and architect Dom Hans van der Laan (1904-1991) asked for the minimum difference between two sizes, so that we will clearly perceive them as distinct. Also, what is the maximum ratio of two sizes, so that we can still relate them and perceive nearness. According to his observations, the answers are, spanning a single order of size.[5] Requiring proportional continuity, he constructed a geometric series of eight measures (types of size) with common ratio . Put in rational form, this architectonic system of measure is constructed from a subset of the numbers that bear his name.

The Van der Laan numbers have a close connection to the Perrin and Padovan sequences. In combinatorics, the number of compositions of n into parts 2 and 3 is counted by the nth Van der Laan number.

The Van der Laan sequence is defined by the third-order recurrence relation

Vn=Vn-2+Vn-3

for,with initial values

V1=0,V0=V2=1

.

The first few terms are 1, 0, 1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86,... .The limit ratio between consecutive terms is the plastic ratio.

Table of the eight Van der Laan measures! k !! n - m !! !! err !! interval
0 3 - 3 1 /1 0 minor element
1 8 - 7 4 /3 1/116 major element
2 10 - 8 7 /4 -1/205 minor piece
3 10 - 7 7 /3 1/116 major piece
4 7 - 3 3 /1 -1/12 minor part
5 8 - 3 4 /1 -1/12 major part
6 13 - 7 16 /3 -1/14 minor whole
7 10 - 3 7 /1 -1/6 major whole

The first 14 indices n for which is prime are n = 5, 6, 7, 9, 10, 16, 21, 32, 39, 86, 130, 471, 668, 1264 . The last number has 154 decimal digits.

The sequence can be extended to negative indices using

Vn=Vn+3-Vn+1

.

The generating function of the Van der Laan sequence is given by

1
1-x2-x3

=

infty
\sum
n=0

Vnxn

for

x<1/\rho.

The sequence is related to sums of binomial coefficients by

Vn=

\lfloorn/2\rfloor
\sum
k=\lfloor(n+2)/3\rfloor

{k\choosen-2k}

.

The characteristic equation of the recurrence is

Vn-1=a\alphan+b\betan+c\gamman

, with real and conjugates and the roots of

23x3+x-1=0

.Since

\left\vertb\betan+c\gamman\right\vert<1/\sqrt{\alphan

} and

\alpha=\rho

, the number is the nearest integer to

a\rhon+1

, with and

a=\rho/(3\rho2-1)=

Coefficients

a=b=c=1

result in the Binet formula for the related sequence

Pn=2Vn+Vn-3

.

The first few terms are 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119,... .

This Perrin sequence has the Fermat property: if p is prime,

Pp\equivP1\bmodp

. The converse does not hold, but the small number of pseudoprimes

n\midPn

makes the sequence special.[6] The only 7 composite numbers below to pass the test are n = 271441, 904631, 16532714, 24658561, 27422714, 27664033, 46672291.

Q=\begin{pmatrix}0&1&1\ 1&0&0\ 0&1&0\end{pmatrix},

Q^ = \begin V_ & V_ & V_ \\ V_ & V_ & V_ \\ V_ & V_ & V_ \end

The trace of gives the Perrin numbers.

Alternatively, can be interpreted as incidence matrix for a D0L Lindenmayer system on the alphabet with corresponding substitution rule

\begin{cases} a\mapstob\\ b\mapstoac\\ c\mapstoa \end{cases}

and initiator . The series of words produced by iterating the substitution have the property that the number of and are equal to successive Van der Laan numbers. Their lengths are

l(wn)=Vn+2.

Associated to this string rewriting process is a set composed of three overlapping self-similar tiles called the Rauzy fractal, that visualizes the combinatorial information contained in a multiple-generation letter sequence.[7]

Geometry

There are precisely three ways of partitioning a square into three similar rectangles:[8]

  1. The trivial solution given by three congruent rectangles with aspect ratio 3:1.
  2. The solution in which two of the three rectangles are congruent and the third one has twice the side lengths of the other two, where the rectangles have aspect ratio 3:2.
  3. The solution in which the three rectangles are all of different sizes and where they have aspect ratio ρ2. The ratios of the linear sizes of the three rectangles are: ρ (large:medium); ρ2 (medium:small); and ρ3 (large:small). The internal, long edge of the largest rectangle (the square's fault line) divides two of the square's four edges into two segments each that stand to one another in the ratio ρ. The internal, coincident short edge of the medium rectangle and long edge of the small rectangle divides one of the square's other, two edges into two segments that stand to one another in the ratio ρ4.

The fact that a rectangle of aspect ratio ρ2 can be used for dissections of a square into similar rectangles is equivalent to an algebraic property of the number ρ2 related to the Routh–Hurwitz theorem: all of its conjugates have positive real part.

The circumradius of the snub icosidodecadodecahedron for unit edge length is

1
2

\sqrt{

2\rho-1
\rho-1
} .

History and names

was first studied by Axel Thue in 1912 and by G. H. Hardy in 1919.[3] French high school student Gérard Cordonnier discovered the ratio for himself in 1924. In his correspondence with Hans van der Laan a few years later, he called it the radiant number (French: le nombre radiant). Van der Laan initially referred to it as the fundamental ratio (Dutch; Flemish: de grondverhouding), using the plastic number (Dutch; Flemish: het plastische getal) from the 1950s onward. In 1944 Carl Siegel showed that ρ is the smallest possible Pisot–Vijayaraghavan number and suggested naming it in honour of Thue.

Unlike the names of the golden and silver ratios, the word plastic was not intended by van der Laan to refer to a specific substance, but rather in its adjectival sense, meaning something that can be given a three-dimensional shape.[9] This, according to Richard Padovan, is because the characteristic ratios of the number, and, relate to the limits of human perception in relating one physical size to another. Van der Laan designed the 1967 St. Benedictusberg Abbey church to these plastic number proportions.[10]

The plastic number is also sometimes called the silver number, a name given to it by Midhat J. Gazalé[11] and subsequently used by Martin Gardner,[12] but that name is more commonly used for the silver ratio, one of the ratios from the family of metallic means first described by Vera W. de Spinadel. Gardner suggested referring to as "high phi", and Donald Knuth created a special typographic mark for this name, a variant of the Greek letter phi ("φ") with its central circle raised, resembling the Georgian letter pari ("Ⴔ").

See also

x3=x+1

:

x2=x+1

x3=x2+1

Further reading

External links

Notes and References

  1. Web site: What is the plastic ratio? . Tabrizian. Peyam. 2022. YouTube. 26 November 2023. en.
  2. Aarts. Jan. Fokkink. Robbert. Kruijtzer. Godfried. 2001. Morphic numbers. Nieuw Archief voor Wiskunde. 5. 2. 1. 56–58. 26 November 2023. en.
  3. Panju. Maysum. 2011. A systematic construction of almost integers . The Waterloo Mathematics Review. 1. 2. 35–43. 29 November 2023. en.
  4. [w:de:Ramanujansche g-Funktion und G-Funktion#Spezielle Werte|Ramanujan G-function (in German)]
  5. Web site: 1:7 and a series of 8. Voet. Caroline.

    nl:Caroline Voet

    . 2019. The digital study room of Dom Hans van der Laan. Van der Laan Foundation. 28 November 2023. en.
  6. Adams . William . Shanks . Daniel . Daniel Shanks . Strong primality tests that are not sufficient . Math. Comp. . AMS . 1982 . 39 . 159 . 255–300 . 10.2307/2007637 . free . 2007637 .
  7. Siegel . Anne . Thuswaldner . Jörg M. . 2009 . Topological properties of Rauzy fractals . Mémoires de la Société Mathématique de France . 118 . 2 . 1-140 . 10.24033/msmf.430.
  8. Stewart . Ian . 1996 . Tales of a neglected number . Scientific American . 274 . 6 . 102–103 . 10.1038/scientificamerican0696-102. 1996SciAm.274f.102S . https://web.archive.org/web/20120320051231/http://members.fortunecity.com/templarser/padovan.html . 2012-03-20 . Feedback in: Stewart . Ian . Ian Stewart (mathematician). 1996 . A guide to computer dating . Scientific American . 275 . 5 . 118 . 10.1038/scientificamerican1196-116. 1996SciAm.275e.116S .
  9. Shannon . A. G. . Anderson . P. G. . Horadam . A. F. . Properties of Cordonnier, Perrin and Van der Laan numbers . International Journal of Mathematical Education in Science and Technology . 37 . 7 . 2006 . 825–831 . 10.1080/00207390600712554. 119808971 .
  10. .
  11. Book: Gazalé, Midhat J. . Midhat J. Gazalé . 1999 . Gnomon: From Pharaohs to Fractals . Chapter VII: The silver number . Princeton, NJ . Princeton University Press . 135–150.
  12. Book: Gardner, Martin . Martin Gardner . 2001 . A Gardner's Workout . Six challenging dissection tasks . https://static.nsta.org/pdfs/QuantumV4N5.pdf . Natick, MA . A K Peters . 121–128. (Link to the 1994 Quantum article without Gardner's Postscript.)