In additive combinatorics, the Plünnecke–Ruzsa inequality is an inequality that bounds the size of various sumsets of a set
B
A
A+B
A
The following sumset notation is standard in additive combinatorics. For subsets
A
B
k
A+B=\{a+b:a\inA,b\inB\}
A-B=\{a-b:a\inA,b\inB\}
kA=\underbrace{A+A+ … +A}ktimes
A+B
A
B
The most commonly cited version of the statement of the Plünnecke–Ruzsa inequality is the following.[3]
This is often used when
A=B
K=|2A|/|A|
A
The version of this inequality that was originally proven by Plünnecke (1970) is slightly weaker.
The Ruzsa triangle inequality is an important tool which is used to generalize Plünnecke's inequality to the Plünnecke–Ruzsa inequality. Its statement is:
The following simple proof of the Plünnecke–Ruzsa inequality is due to Petridis (2014).[4]
Lemma: Let
A
B
G
X\subseteqA
K'=|X+B|/|X|
C\subsetG
|X+B+C|\leK'|X+C|.
Proof: This is demonstrated by induction on the size of
|C|
|C|=1
S+C
S
S\subseteqG
|X+B+C|=|X+B|=K'|X|=K'|X+C|.
C\subseteqG
|C|\len
n
C
G
|C|=n+1
C=C'\sqcup\{\gamma\}
\gamma\inC
C'
Z=\{x\inX:x+B+\{\gamma\}\subseteqX+B+C'\}
Z
Z+B+\{\gamma\}\subseteqX+B+C'
X+B+C=(X+B+C')\cup((X+B+\{\gamma\})\backslash(Z+B+\{\gamma\})).
\begin{align}|X+B+C|&\le|X+B+C'|+|(X+B+\{\gamma\})\backslash(Z+B+\{\gamma\})|\\&=|X+B+C'|+|X+B+\{\gamma\}|-|Z+B+\{\gamma\}|\\&=|X+B+C'|+|X+B|-|Z+B|.\end{align}
Z
Z\subseteqX\subseteqA
X
|Z+B|\geK'|Z|
C'
X
\begin{align}|X+B+C|&\le|X+B+C'|+|X+B|-|Z+B|\\&\leK'|X+C'|+|X+B|-|Z+B|\\&\leK'|X+C'|+K'|X|-|Z+B|\\&\leK'|X+C'|+K'|X|-K'|Z|\\&=K'(|X+C'|+|X|-|Z|).\end{align}
W=\{x\inX:x+\gamma\inX+C'\}
y\inX+C'
y\inX+\{\gamma\}
x\inX
x+\gamma=y\inX+C'
x\inW
y\inW+\{\gamma\}
X+C'
(X+\{\gamma\})\backslash(W+\{\gamma\})
W
C'
X+C=(X+C')\sqcup((X+\{\gamma\})\backslash(W+\{\gamma\})).
W\subseteqZ
|W|\le|Z|
\begin{align}|X+C|&=|X+C'|+|(X+\{\gamma\})\backslash(W+\{\gamma\})|\\&=|X+C'|+|X+\{\gamma\}|-|W+\{\gamma\}|\\&=|X+C'|+|X|-|W|\\&\ge|X+C'|+|X|-|Z|.\end{align}
|X+B+C|\leK'(|X+C'|+|X|-|Z|)\leK'|X+C|.
To prove the Plünnecke–Ruzsa inequality, take
X
K'
|X+nB|\leKn|X|.
K
K'
K'\leK
X
|X+B|\leK|X|
n=j
C=jB
|X+(j+1)B|\leK'|X+jB|\leK|X+jB|\leKj+1|X|.
|mB-nB|\le | |X+mB||X+nB| | \le |
|X| |
Km|X|Kn|X| | |
|X| |
=Km+n|X|.
X\subseteqA
|X|\le|A|
|mB-nB|\leKm+n|A|.
Both Plünnecke's proof of Plünnecke's inequality and Ruzsa's original proof of the Plünnecke–Ruzsa inequality use the method of Plünnecke graphs. Plünnecke graphs are a way to capture the additive structure of the sets
A,A+B,A+2B,...
To define a Plünnecke graph we first define commutative graphs and layered graphs:
G
x,y,z1,z2,...,zk
(x,y)
(y,zi)
G
i
y1,y2,...,yk
(x,yi)
(yi,zi)
G
i
G
Definition. A layered graph is a (directed) graph
G
V0\cupV1\cup...\cupVm
G
Vi
Vi+1
i
Definition. A Plünnecke graph is a layered graph which is commutative.
The canonical example of a Plünnecke graph is the following, which shows how the structure of the sets
A,A+B,A+2B,...,A+mB
Example. Let
A,B
G
Vj
A+jB
V0=A
V1=A+B
Vm=A+mB
(x,y)
x\inVi
y\inVi+1
b\inB
y=x+b
x\inVi
x+b\inVi+1
B
G
G
(x,y)
(y,zi)
G
i
y-x,zi-y\inB
yi=x+zi-y
yi-x=zi-y\inB
zi-yi=y-x\inB
G
G
G
In a Plünnecke graph, the image of a set
X\subseteqV0
Vj
im(X,Vj)
Vj
X
im(X,Vj)
X+jB
The magnification ratio between
V0
Vj
\muj(G)
\muj(G)=
min | |
X\subseteqV0,X ≠ \emptyset |
|im(X,Vj)| | |
|X| |
.
Plünnecke's theorem is the following statement about Plünnecke graphs.
The proof of Plünnecke's theorem involves a technique known as the "tensor product trick", in addition to an application of Menger's theorem.[5]
The Plünnecke–Ruzsa inequality is a fairly direct consequence of Plünnecke's theorem and the Ruzsa triangle inequality. Applying Plünnecke's theorem to the graph given in the example, at
j=m
j=1
|A+B|/|A|=K
X\subseteqA
|X+mB|/|X|\leKm
X
A
X'\subseteqX
|X'+nB|/|X'|\leKn
-X',mB,nB
|mB-nB|\le|X'+mB||X'+nB|/|X'|\leKm|X|Kn=Km+n|X|,