Relativistic Heavy Ion Collider Explained

Relativistic Heavy Ion Collider (RHIC)
Type:synchrotron
Beam:polarized p to U ion
Target:collider
Energy:255 GeV per beam (p), 100 GeV/nucleon per beam (Au ions)
Luminosity: (p+p), (Au+Au)
Location:Upton, New York
Institution:Brookhaven National Laboratory
Dates:2000 - present

The Relativistic Heavy Ion Collider (RHIC) is the first and one of only two operating heavy-ion colliders, and the only spin-polarized proton collider ever built. Located at Brookhaven National Laboratory (BNL) in Upton, New York, and used by an international team of researchers, it is the only operating particle collider in the US.[1] [2] [3] By using RHIC to collide ions traveling at relativistic speeds, physicists study the primordial form of matter that existed in the universe shortly after the Big Bang.[4] [5] By colliding spin-polarized protons, the spin structure of the proton is explored.

RHIC is as of 2019 the second-highest-energy heavy-ion collider in the world, with nucleon energies for collisions reaching 100 GeV for gold ions and 250 GeV for protons.[6] As of November 7, 2010, the Large Hadron Collider (LHC) has collided heavy ions of lead at higher energies than RHIC.[7] The LHC operating time for ions (lead–lead and lead–proton collisions) is limited to about one month per year.

In 2010, RHIC physicists published results of temperature measurements from earlier experiments which concluded that temperatures in excess of 345 MeV (4 terakelvin or 7 trillion degrees Fahrenheit) had been achieved in gold ion collisions, and that these collision temperatures resulted in the breakdown of "normal matter" and the creation of a liquid-like quark–gluon plasma.[8]

In January 2020, the US Department of Energy Office of Science selected the eRHIC design for the future Electron–Ion collider (EIC), building on the existing RHIC facility at BNL.

The accelerator

RHIC is an intersecting storage ring particle accelerator. Two independent rings (arbitrarily denoted as "Blue" and "Yellow") circulate heavy ions and/or polarized protons in opposite directions and allow a virtually free choice of colliding positively charged particles (the eRHIC upgrade will allow collisions between positively and negatively charged particles). The RHIC double storage ring is hexagonally shaped and has a circumference of, with curved edges in which stored particles are deflected and focused by 1,740 superconducting magnets using niobium-titanium conductors. The dipole magnets operate at .[9] The six interaction points (between the particles circulating in the two rings) are in the middle of the six relatively straight sections, where the two rings cross, allowing the particles to collide. The interaction points are enumerated by clock positions, with the injection near 6 o'clock. Two large experiments, STAR and sPHENIX, are located at 6 and 8 o'clock respectively. The sPHENIX experiment is the newest experiment to be built at RHIC, replacing PHENIX at the 8 o'clock position.[10]

A particle passes through several stages of boosters before it reaches the RHIC storage ring. The first stage for ions is the electron beam ion source (EBIS), while for protons, the linear accelerator (Linac) is used. As an example, gold nuclei leaving the EBIS have a kinetic energy of per nucleon and have an electric charge Q = +32 (32 of 79 electrons stripped from the gold atom). The particles are then accelerated by the Booster synchrotron to per nucleon, which injects the projectile now with Q = +77 into the Alternating Gradient Synchrotron (AGS), before they finally reach per nucleon and are injected in a Q = +79 state (no electrons left) into the RHIC storage ring over the AGS-to-RHIC Transfer Line (AtR).

To date the types of particle combinations explored at RHIC are,,,,,,,,, and . The projectiles typically travel at a speed of 99.995% of the speed of light. For collisions, the center-of-mass energy is typically per nucleon-pair, and was as low as per nucleon-pair. An average luminosity of was targeted during the planning. The current average luminosity of the collider has reached, 44 times the design value.[11] The heavy ion luminosity is substantially increased through stochastic cooling.[12]

One unique characteristic of RHIC is its capability to collide polarized protons. RHIC holds the record of highest energy polarized proton beams. Polarized protons are injected into RHIC and preserve this state throughout the energy ramp. This is a difficult task that is accomplished with the aid of corkscrew magnetics called 'Siberian snakes' (in RHIC a chain 4 helical dipole magnets). The corkscrew induces the magnetic field to spiral along the direction of the beam [13] Run-9 achieved center-of-mass energy of on 12 February 2009.[14] In Run-13 the average luminosity of the collider reached, with a time and intensity averaged polarization of 52%.[11]

AC dipoles have been used in non-linear machine diagnostics for the first time in RHIC.[15]

The experiments

There are two detectors currently operating at RHIC: STAR (6 o'clock, and near the AGS-to-RHIC Transfer Line) and sPHENIX (8 o'clock), the successor to PHENIX. PHOBOS (10 o'clock) completed its operation in 2005, and BRAHMS (2 o'clock) in 2006.

Among the two larger detectors, STAR is aimed at the detection of hadrons with its system of time projection chambers covering a large solid angle and in a conventionally generated solenoidal magnetic field, while PHENIX is further specialized in detecting rare and electromagnetic particles, using a partial coverage detector system in a superconductively generated axial magnetic field. The smaller detectors have larger pseudorapidity coverage, PHOBOS has the largest pseudorapidity coverage of all detectors, and tailored for bulk particle multiplicity measurement, while BRAHMS is designed for momentum spectroscopy, in order to study the so-called "small-x" and saturation physics. There is an additional experiment, PP2PP (now part of STAR), investigating spin dependence in p + p scattering.[16]

The spokespersons for each of the experiments are:

Current results

For the experimental objective of creating and studying the quark–gluon plasma, RHIC has the unique ability to provide baseline measurements for itself. This consists of both the lower energy and also lower mass number projectile combinations that do not result in the density of 200 GeV Au + Au collisions, like the p + p and d + Au collisions of the earlier runs, and also Cu + Cu collisions in Run-5.

Using this approach, important results of the measurement of the hot QCD matter created at RHIC are:[17]

dn/d\phi\propto1+2v2(pT)\cos2\phi

(pT is the transverse momentum,

\phi

angle with the reaction plane). This is a direct result of the elliptic shape of the nucleus overlap region during the collision and hydrodynamical property of the matter created.
2
Q
s

\propto\langleNpart\rangle/2

, with Npart/2 being the number of participant nucleons in a collision (as opposed to the number of binary collisions). The observed charged multiplicity follows the expected dependency of

nch/A\propto1/\alphas(Q

2)
s
, supporting the predictions of the color glass condensate model. For a detailed discussion, see e.g. Dmitri Kharzeev et al.;[19] for an overview of color glass condensates, see e.g. Iancu & Venugopalan.[20]

\muB

. The experimental value Tch varies a bit with the model used, with most authors giving a value of 160 MeV < Tch < 180 MeV, which is very close to the expected QCD phase transition value of approximately 170 MeV obtained by lattice QCD calculations (see e.g. Karsch[21]).

While in the first years, theorists were eager to claim that RHIC has discovered the quark–gluon plasma (e.g. Gyulassy & McLarren[22]), the experimental groups were more careful not to jump to conclusions, citing various variables still in need of further measurement.[23] The present results shows that the matter created is a fluid with a viscosity near the quantum limit, but is unlike a weakly interacting plasma (a widespread yet not quantitatively unfounded belief on how quark–gluon plasma looks).

A recent overview of the physics result is provided by the RHIC Experimental Evaluations 2004, a community-wide effort of RHIC experiments to evaluate the current data in the context of implication for formation of a new state of matter.[24] [25] [26] [27] These results are from the first three years of data collection at RHIC.

New results were published in Physical Review Letters on February 16, 2010, stating the discovery of the first hints of symmetry transformations, and that the observations may suggest that bubbles formed in the aftermath of the collisions created in the RHIC may break parity symmetry, which normally characterizes interactions between quarks and gluons.[28] [29]

The RHIC physicists announced new temperature measurements for these experiments of up to 4 trillion kelvins, the highest temperature ever achieved in a laboratory.[30] It is described as a recreation of the conditions that existed during the birth of the Universe.[31]

Possible closure under flat nuclear science budget scenarios

In late 2012, the Nuclear Science Advisory Committee (NSAC) was asked to advise the Department of Energy's Office of Science and the National Science Foundation how to implement the nuclear science long range plan written in 2007, if future nuclear science budgets continue to provide no growth over the next four years. In a narrowly decided vote, the NSAC committee showed a slight preference, based on non-science related considerations,[32] for shutting down RHIC rather than canceling the construction of the Facility for Rare Isotope Beams (FRIB).[33]

By October 2015, the budget situation had improved, and RHIC can continue operations into the next decade.[34]

The future

RHIC began operation in 2000 and until November 2010 was the highest-energy heavy-ion collider in the world. The Large Hadron Collider (LHC) of CERN, while used mainly for colliding protons, operates with heavy ions for about one month per year. The LHC has operated with 25 times higher energies per nucleon. As of 2018, RHIC and the LHC are the only operating hadron colliders in the world.

Due to the longer operating time per year, a greater number of colliding ion species and collision energies can be studied at RHIC. In addition and unlike the LHC, RHIC is also able to accelerate spin polarized protons, which would leave RHIC as the world's highest energy accelerator for studying spin-polarized proton structure.

A major upgrade is the Electron–Ion Collider (EIC), the addition of a 18 GeV high intensity electron beam facility, allowing electron–ion collisions. At least one new detector will have to be built to study the collisions. A review was published by Abhay Deshpande et al. in 2005.[35] A more recent description is at:[36]

On January 9, 2020, It was announced by Paul Dabbar, undersecretary of the US Department of Energy Office of Science, that the BNL eRHIC design has been selected for the future electron–ion collider (EIC) in the United States. In addition to the site selection, it was announced that the BNL EIC had acquired CD-0 (mission need) from the Department of Energy.[37]

Critics of high-energy experiments

Before RHIC started operation, critics postulated that the extremely high energy could produce catastrophic scenarios,[38] such as creating a black hole, a transition into a different quantum mechanical vacuum (see false vacuum), or the creation of strange matter that is more stable than ordinary matter. These hypotheses are complex, but many predict that the Earth would be destroyed in a time frame from seconds to millennia, depending on the theory considered. However, the fact that objects of the Solar System (e.g., the Moon) have been bombarded with cosmic particles of significantly higher energies than that of RHIC and other man-made colliders for billions of years, without any harm to the Solar System, were among the most striking arguments that these hypotheses were unfounded.

The other main controversial issue was a demand by critics for physicists to reasonably exclude the probability for such a catastrophic scenario. Physicists are unable to demonstrate experimental and astrophysical constraints of zero probability of catastrophic events, nor that tomorrow Earth will be struck with a "doomsday" cosmic ray (they can only calculate an upper limit for the likelihood). The result would be the same destructive scenarios described above, although obviously not caused by humans. According to this argument of upper limits, RHIC would still modify the chance for the Earth's survival by an infinitesimal amount.

Concerns were raised in connection with the RHIC particle accelerator, both in the media[39] [40] and in the popular science media.[41] The risk of a doomsday scenario was indicated by Martin Rees, with respect to the RHIC, as being at least a 1 in 50,000,000 chance.[42] With regards to the production of strangelets, Frank Close, professor of physics at the University of Oxford, indicates that "the chance of this happening is like you winning the major prize on the lottery 3 weeks in succession; the problem is that people believe it is possible to win the lottery 3 weeks in succession."[40] After detailed studies, scientists reached such conclusions as "beyond reasonable doubt, heavy-ion experiments at RHIC will not endanger our planet"[43] and that there is "powerful empirical evidence against the possibility of dangerous strangelet production".[44]

The debate started in 1999 with an exchange of letters in Scientific American between Walter L. Wagner and F. Wilczek,[45] in response to a previous article by M. Mukerjee.[46] The media attention unfolded with an article in UK Sunday Times of July 18, 1999, by J. Leake,[47] closely followed by articles in the U.S. media.[48] The controversy mostly ended with the report of a committee convened by the director of Brookhaven National Laboratory, J. H. Marburger, ostensibly ruling out the catastrophic scenarios depicted.[44] However, the report left open the possibility that relativistic cosmic ray impact products might behave differently while transiting earth compared to "at rest" RHIC products; and the possibility that the qualitative difference between high-E proton collisions with earth or the moon might be different than gold on gold collisions at the RHIC. Wagner tried subsequently to stop full-energy collision at RHIC by filing Federal lawsuits in San Francisco and New York, but without success.[49] The New York suit was dismissed on the technicality that the San Francisco suit was the preferred forum. The San Francisco suit was dismissed, but with leave to refile if additional information was developed and presented to the court.[50]

On March 17, 2005, the BBC published an article implying that researcher Horaţiu Năstase believes black holes have been created at RHIC.[51] However, the original papers of H. Năstase[52] and the New Scientist article[53] cited by the BBC state that the correspondence of the hot dense QCD matter created in RHIC to a black hole is only in the sense of a correspondence of QCD scattering in Minkowski space and scattering in the AdS5 × X5 space in AdS/CFT; in other words, it is similar mathematically. Therefore, RHIC collisions might be described by mathematics relevant to theories of quantum gravity within AdS/CFT, but the described physical phenomena are not the same.

Financial information

The RHIC project was sponsored by the United States Department of Energy, Office of Science, Office of Nuclear physics. It had a line-item budget of 616.6 million U.S. dollars.[1]

For fiscal year 2006 the operational budget was reduced by 16.1 million U.S. dollars from the previous year, to 115.5 million U.S. dollars. Though operation under the fiscal year 2006 federal budget cut[54] [55] was uncertain, a key portion of the operational cost (13 million U.S. dollars) was contributed privately by a group close to Renaissance Technologies of East Setauket, New York.[56] [57]

In fiction

See also

Further reading

External links

Notes and References

  1. M. Harrison . T. Ludlam . S. Ozaki . 2003 . RHIC Project Overview . . 499 . 2 - 3 . 235 . 2003NIMPA.499..235H . 10.1016/S0168-9002(02)01937-X.
  2. M. Harrison . S. Peggs . T. Roser . 2002 . The RHIC Accelerator . . 52 . 425 . 2002ARNPS..52..425H . 10.1146/annurev.nucl.52.050102.090650. free .
  3. E. D. Courant . 2003 . Accelerators, Colliders, and Snakes . . 53 . 1 . 2003ARNPS..53....1C . 10.1146/annurev.nucl.53.041002.110450. free .
  4. M. Riordan . W. A. Zajc . 2006 . The First Few Microseconds . . 294 . 5 . 34A, 35–41 . 10.1038/scientificamerican0506-34A. 16708486 . 2006SciAm.294e..34R.
  5. Web site: S. Mirsky . W. A. Zajc . J. Chaplin . 26 April 2006 . Early Universe, Benjamin Franklin Science, Evolution Education . Science Talk . Scientific American . 2010-02-16.
  6. Web site: 2022-04-29 . NP Relativistic Heavy Ion Collid... U.S. DOE Office of Science (SC) . 2023-03-16 . science.osti.gov . en-US.
  7. 8 November 2010 . CERN Completes Transition to Lead-Ion Running at the LHC . . 2016-11-23.
  8. Web site: A. Trafton . 9 February 2010 . Explained: Quark gluon plasma . . 2017-01-24.
  9. Web site: P. Wanderer . 22 February 2008 . RHIC Project . Brookhaven National Laboratory, Superconducting Magnet Division . 2021-03-21.
  10. Web site: RHIC Accelerators . . 2010-02-16.
  11. Web site: RHIC Run Overview . Brookhaven National Laboratory.
  12. M. Blaskiewicz . J. M. Brennan . K. Mernick . 2010 . Three-Dimensional Stochastic Cooling in the Relativistic Heavy Ion Collider . . 105 . 9 . 094801 . 2010PhRvL.105i4801B . 10.1103/PhysRevLett.105.094801 . 20868165.
  13. 22 March 2002 . Snake charming induces spin-flip . . 42 . 3 . 2 . 13 September 2006 . 5 December 2008 . https://web.archive.org/web/20081205081201/http://www.cerncourier.com/main/article/42/3/2 . dead .
  14. Web site: RHIC Run-9 . . 2010-02-16.
  15. R. Tomás . etal . 2005 . Measurement of global and local resonance terms . . 8 . 2 . 024001 . 2005PhRvS...8b4001T . 10.1103/PhysRevSTAB.8.024001. free .
  16. Web site: K. Yip . 23 August 2012 . The pp2pp Experiment . RHiC . 2013-09-18 . 2013-05-24 . https://web.archive.org/web/20130524034902/http://www.rhic.bnl.gov/pp2pp/ . dead .
  17. T. Ludlam . L. McLerran . 2003 . What Have We Learned from the Relativistic Heavy Ion Collider? . . 56 . 10 . 48 . 2003PhT....56j..48L . 10.1063/1.1629004. free .
  18. L. N. Lipatov . 1976 . Reggeization of the vector meson and the vacuum singularity in nonabelian gauge theories . . 23 . 338.
  19. D. Kharzeev . E. Levin . L. McLerran . 2003 . Parton saturation and Npart scaling of semi-hard processes in QCD . . 561 . 1–2 . 93–101 . hep-ph/0210332 . 2003PhLB..561...93K . 10.1016/S0370-2693(03)00420-9. 17978566 .
  20. Book: E. Iancu . R. Venugopalan . 2003 . The Color Glass Condensate and High Energy Scattering in QCQ . R. C. Hwa . X.-N. Wang . Quark–Gluon Plasma 3 . limited . 249 . . hep-ph/0303204 . 10.1142/9789812795533_0005 . 978-981-238-077-7. 117826241 .
  21. Book: F. Karsch . 2002 . Lattice QCD at High Temperature and Density . W. Plessas . L. Mathelitsch . Lectures on Quark Matter . . 583 . 2002 . 209–249 . hep-lat/0106019 . 2002LNP...583..209K . 978-3-540-43234-0. 10.1007/3-540-45792-5_6 . 42124100 .
  22. M. Gyulassy . L. McLerran . 2005 . New Forms of QCD Matter Discovered at RHIC . . 750 . 30–63 . nucl-th/0405013 . 2005NuPhA.750...30G . 10.1016/j.nuclphysa.2004.10.034. 14175774 .
  23. Web site: K. McNulty Walsh . 2004 . Latest RHIC Results Make News Headlines at Quark Matter 2004 . Discover Brookhaven . 2 . 1 . 14 - 17 . https://web.archive.org/web/20141011130758/http://www.bnl.gov/discover/Spring_04/RHIC_1.asp . 2014-10-11.
  24. I. Arsene . etal . BRAHMS collaboration . Quark Gluon Plasma an Color Glass Condensate at RHIC? The perspective from the BRAHMS experiment . . 757 . 1–2 . 1–27 . 2005 . nucl-ex/0410020 . 2005NuPhA.757....1A . 10.1016/j.nuclphysa.2005.02.130. 204924453 .
  25. K. Adcox . etal. . PHENIX Collaboration . 2005 . Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration . . 757 . 1–2 . 184–283 . nucl-ex/0410003 . 2005NuPhA.757..184A . 10.1016/j.nuclphysa.2005.03.086. 119511423 .
  26. B. B. Back . etal . PHOBOS Collaboration . 2005 . The PHOBOS Perspective on Discoveries at RHIC . . 757 . 1–2 . 28–101 . nucl-ex/0410022 . 2005NuPhA.757...28B . 10.1016/j.nuclphysa.2005.03.084.
  27. J. Adams . STAR Collaboration . etal . 2005 . Experimental and Theoretical Challenges in the Search for the Quark Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions . . 757 . 1–2 . 102–183 . nucl-ex/0501009 . 2005NuPhA.757..102A . 10.1016/j.nuclphysa.2005.03.085. 119062864 .
  28. Web site: K. Melville . 16 February 2010 . Mirror Symmetry Broken at 7 Trillion Degrees . Science a Go Go . 2010-02-16.
  29. News: D. Overbye . 15 February 2010 . In Brookhaven Collider, Scientists Briefly Break a Law of Nature . . 2010-02-16.
  30. Web site: 15 February 2010 . Perfect Liquid Hot Enough to be Quark Soup . . 2017-01-24.
  31. Web site: D. Vergano . 16 February 2010 . Scientists Re-create High Temperatures from Big Bang . . 2010-02-16.
  32. Web site: NSAC Charges / Reports . Nuclear Science Advisory Committee .
  33. J. Matson . 31 January 2013 . Decelerating American Physics: Panel Advises Shutdown of Last U.S. Collider . . 2013-02-02.
  34. D. Castelvecchi . 2015 . Neutrino study made key priority for US nuclear physics . . 526 . 7574 . 485 . 2015Natur.526..485C . 10.1038/526485a . 26490595. free .
  35. A. Deshpande . R. Milner . R. Venugopalan . W. Vogelsang . 2005 . Study of the Fundamental Structure of Matter with an Electron–Ion Collider . . 55 . 1 . 165–228 . hep-ph/0506148 . 2005ARNPS..55..165D . 10.1146/annurev.nucl.54.070103.181218. free.
  36. https://arxiv.org/abs/1409.1633 E. C. Aschenauer et al., "eRHIC Design Study: An Electron–Ion Collider at BNL"
  37. https://www.energy.gov/articles/us-department-energy-selects-brookhaven-national-laboratory-host-major-new-nuclear-physics, "U.S. Department of Energy Selects Brookhaven National Laboratory to Host Major New Nuclear Physics Facility"
  38. T. D. Gutierrez . 2000 . Doomsday Fears at RHIC . . 24 . 29.
  39. R. Matthews . Robert Matthews (scientist) . 28 August 1999 . A Black Hole Ate My Planet . . 2017-01-24.
  40. 2005 . End Day . End Day . Horizon . Horizon (BBC TV series) . BBC.
  41. W. Wagner . Black holes at Brookhaven? . . July 1999. (And reply by F. Wilczek.)
  42. Cf. Brookhaven Report mentioned by Rees, Martin (Lord), Our Final Century: Will the Human Race Survive the Twenty-first Century?, U.K., 2003, ; note that the mentioned "1 in 50 million" chance is disputed as being a misleading and played down probability of the serious risks (Aspden, U.K., 2006)
  43. A. Dar . A. De Rújula . U. Heinz . 1999 . Will relativistic heavy-ion colliders destroy our planet? . . 470 . 1–4 . 142–148 . hep-ph/9910471 . 1999PhLB..470..142D . 10.1016/S0370-2693(99)01307-6. 17837332 .
  44. R. L. Jaffe . W. Busza . J. Sandweiss . F. Wilczek . 2000 . Review of Speculative "Disaster Scenarios" at RHIC . . 72 . 4 . 1125–1140 . hep-ph/9910333 . 2000RvMP...72.1125J . 10.1103/RevModPhys.72.1125. 444580 .
  45. W. L. Wagner . F. Wilczek . July 1999 . . 281 . 8.
  46. M. Mukerjee . March 1999 . . 280 . 60.
  47. Web site: J. Leake . 18 July 1999 . Big Bang machine could destroy Earth . Sunday Times.
  48. Web site: F. Moody . 5 October 2003 . The Big Bang, Part 2 . . https://web.archive.org/web/20031005104321/https://abcnews.go.com/sections/tech/FredMoody/moody990914.html . 2003-10-05 . dead.
  49. Web site: A. Boyle . 14 June 2000 . Big Bang machine gets down to work . https://web.archive.org/web/20140313040747/http://www.nbcnews.com/id/3077374/ . dead . March 13, 2014 . . 2017-01-24.
  50. United States District Court, Eastern District of New York, Case No. 00CV1672, Walter L. Wagner vs. Brookhaven Science Associates, L.L.C. (2000); United States District Court, Northern District of California, Case No. C99-2226, Walter L. Wagner vs. U.S. Department of Energy, et al. (1999)
  51. News: 17 March 2005 . Lab fireball 'may be black hole' . . 2017-01-24.
  52. H. Nastase . 2005 . The RHIC fireball as a dual black hole . hep-th/0501068.
  53. E. S. Reich . 16 March 2005 . Black hole-like phenomenon created by collider . . 185 . 2491 . 16.
  54. Web site: 22 November 2005 . Senators Express Concern Over Layoffs and Run Times at RHIC and Jefferson Lab . FYI . 168 . . https://web.archive.org/web/20131002124554/http://www.aip.org/fyi/2005/168.html . 2013-10-02.
  55. Web site: N. Canavor . 27 November 2005 . Research Labs Experiencing Budget Woes . . 2017-01-24.
  56. March 2006 . JLab, Brookhaven Hope for Turnaround After Severe Budget Cuts Last Year . APS News . 15 . 3.
  57. Web site: 18 January 2006 . Brookhaven Receives Outside Funding for RHIC . . 2017-01-24.
  58. A. Cohen . 1998 . New Sci-Fi Novel Makes RHIC Central to the Universe . . 52 . 8 . 2.