Pierre Colmez Explained
Pierre Colmez (born 1962) is a French mathematician, notable for his work on p-adic analysis.
Colmez studied at École Normale Supérieure and obtained his doctorate from Grenoble University. He won the 2005 Fermat Prize for his contributions to the study of L-functions and p-adic Galois representations.
In 1998 he was an Invited Speaker of the International Congress of Mathematicians in Berlin.[1] With Jean-Pierre Serre he edited the Correspondance Grothendieck-Serre (2001).[2] [3]
Colmez has won the French Go championship four times.[4]
Mathematical work
He works on special values of L-functions and
-adic representations of
-adic groups at the meeting point of Fontaine's and Langlands' programs. His contributions include:
-adic analog of Dirichlet's analytic
class number formula.
- A conjecture[6] "Colmez's conjecture" relating Artin L-functions at
and periods of abelian varieties with complex multiplication, a far reaching generalization of the
Chowla-Selberg formula.
- A proof[7] of Perrin-Riou's conjectural explicit reciprocity law related to the functional equation of
-adic L-functions.
- Several contributions to Fontaine's program of classification of
-adic representations of the
absolute Galois group of a finite extension of
, including proofs of conjectures of Fontaine such as
[8] "weakly admissible implies admissible" and the
[9] "
-adic monodromy conjecture" which describe representations coming from geometry, or the overconvergence of all representations,
[10] and addition of new concepts such as
[11] "trianguline representations" or
[12] "Banach-Colmez
[13] spaces".
- A construction[14] of the
-adic local
Langlands correspondence for
, via the construction of a functor (known as "Colmez's functor" or
[15] "Colmez's Montreal functor") from representation of
to representations of the absolute Galois group of
.
-adic algebraic and analytic varieties with applications to a geometrization of the
-adic local Langlands correspondence.
Personal life
Pierre Colmez and Leila Schneps are the parents of Coralie Colmez.[19] [20] Violinist David Grimal is Colmez's first cousin.
External links
Notes and References
- Book: Colmez, Pierre. Représentations p-adiques d'un corps local. Doc. Math. (Bielefeld) Extra Vol. ICM Berlin, 1998, vol. II. 1998. 153–162. https://www.elibm.org/ft/10011650000.
- Raynaud, Michel. Michel Raynaud. Book Review: Correspondance Grothendieck-Serre . Notices of the AMS. October 2003. 50. 9. 1085–1086.
- Book: Serre, J.-P.. Colmez, P.. Grothendieck-Serre Correspondence. 2004. American Mathematical Society; Société Mathématique de France. 978-0-8218-3424-4.
- bilingual edition
.
- http://ffg.jeudego.org/informations/competitions/chp_histo.php Open - Fédération Française de Go - Jeu de go
- Résidu en s=1 des fonctions zêta p-adiques, Inventiones mathematicae 91 (1988), 371-389
- Périodes des variétés abéliennes à multiplication complexe, Annals of Mathematics 138 (1993), 625–683
- Théorie d'Iwasawa des représentations de de Rham d'un corps local, Annals of Mathematics 148 (1998), 485–571
- Construction des représentations p-adiques semi-stables (avec J.-M. Fontaine), Inventiones mathematicae 140 (2000), 1–43 (avec Jean-Marc Fontaine)
- Espaces Vectoriels de dimension finie et représentations de de Rham, Astérisque 319 (2008), 117–186
- Représentations p-adiques surconvergentes, Inventiones mathematicae 133 (1998), 581–611 (avec Frédéric Cherbonnier)
- Représentations triangulines de dimension 2, Astérisque 319 (2008), 213–258
- Espaces de Banach de dimension finie, Journal Institut de Mathématiques de Jussieu 1 (2002), 331–439
- Arthur-César Le Bras, Espaces de Banach–Colmez et faisceaux cohérents sur la courbe de Fargues–Fontaine, Duke Math. J. 167 (2018), 3455-3532
- Représentations de
et
-modules, Astérisque 330 (2010), 281–509
- Vytautas Paškūnas, The image of Colmez’s Montreal functor, Publications mathématiques de l'IHÉS 118 (2013), 1–191
-
-adic vanishing cycles and syntomic cohomology, Inventiones mathematicae 208 (2017), 1-108 (with Wiesława Nizioł).
- Cohomologie
-adique de la tour de Drinfeld, le cas de la dimension 1, Journal of the AMS 33 (2020), 311–362 (with Wiesława Nizioł and Gabriel Dospinescu).
- Cohomology of
-adic Stein spaces, Inventiones mathematicae 219 (2020), 873–985 (with Wiesława Nizioł and Gabriel Dospinescu).
- News: Allow me to explain, Your Honour . . 2 May 2013 . 2 October 2020.
- Web site: The Mathematician Who Moonlights As a Rock-Band Violinist . Diana . Tsui . . 9 January 2018 . 2 October 2020.