In mathematics, Pieri's formula, named after Mario Pieri, describes the product of a Schubert cycle by a special Schubert cycle in the Schubert calculus, or the product of a Schur polynomial by a complete symmetric function.
In terms of Schur functions sλ indexed by partitions λ, it states that
\displaystyles\muhr=\sumλsλ
\displaystyles\muer=\sumλsλ
Pieri's formula implies Giambelli's formula. The Littlewood–Richardson rule is a generalization of Pieri's formula giving the product of any two Schur functions. Monk's formula is an analogue of Pieri's formula for flag manifolds.