Pfister's sixteen-square identity explained

In algebra, Pfister's sixteen-square identity is a non-bilinear identity of form

\left(x_1^2+x_2^2+x_3^2+\cdots+x_^2\right)\left(y_1^2+y_2^2+y_3^2+\cdots+y_^2\right) = z_1^2+z_2^2+z_3^2+\cdots+z_^2

It was first proven to exist by H. Zassenhaus and W. Eichhorn in the 1960s,[1] and independently by Albrecht Pfister[2] around the same time. There are several versions, a concise one of which is

\begin&\scriptstyle \\&\scriptstyle \\&\scriptstyle \\&\scriptstyle \\&\scriptstyle \\&\scriptstyle \\&\scriptstyle \\&\scriptstyle \\&\scriptstyle \\&\scriptstyle \\&\scriptstyle \\&\scriptstyle \\&\scriptstyle \\&\scriptstyle \\&\scriptstyle \\&\scriptstyle\end

If all

xi

and

yi

with

i>8

are set equal to zero, then it reduces to Degen's eight-square identity (in blue). The

ui

are

\begin&u_1 = \tfrac \\&u_2 = \tfrac \\&u_3 = \tfrac \\&u_4 = \tfrac \\&u_5 = \tfrac \\&u_6 = \tfrac \\&u_7 = \tfrac \\&u_8 = \tfrac\end

and,

a=-1,\;\;b=0,\;\;c=x_1^2+x_2^2+x_3^2+x_4^2+x_5^2+x_6^2+x_7^2+x_8^2\,.

The identity shows that, in general, the product of two sums of sixteen squares is the sum of sixteen rational squares. Incidentally, the

ui

also obey,

u_1^2+u_2^2+u_3^2+u_4^2+u_5^2+u_6^2+u_7^2+u_8^2 = x_^2+x_^2+x_^2+x_^2+x_^2+x_^2+x_^2+x_^2

No sixteen-square identity exists involving only bilinear functions since Hurwitz's theorem states an identity of the form

\left(x_1^2+x_2^2+x_3^2+\cdots+x_n^2)(y_1^2+y_2^2+y_3^2+\cdots+y_n^2\right) = z_1^2+z_2^2+z_3^2+\cdots+z_n^2

with the

zi

bilinear functions of the

xi

and

yi

is possible only for n ∈ . However, the more general Pfister's theorem (1965) shows that if the

zi

are rational functions of one set of variables, hence has a denominator, then it is possible for all

n=2m

.[3] There are also non-bilinear versions of Euler's four-square and Degen's eight-square identities.

See also

References

  1. H. Zassenhaus and W. Eichhorn, "Herleitung von Acht- und Sechzehn-Quadrate-Identitäten mit Hilfe von Eigenschaften der verallgemeinerten Quaternionen und der Cayley-Dicksonchen Zahlen," Arch. Math. 17 (1966), 492-496
  2. A. Pfister, Zur Darstellung von -1 als Summe von Quadraten in einem Körper," J. London Math. Soc. 40 (1965), 159-165
  3. Pfister's Theorem on Sums of Squares, Keith Conrad, http://www.math.uconn.edu/~kconrad/blurbs/linmultialg/pfister.pdf

External links