Peter Orno Explained

Peter Ørno
Birth Date:1974
Birth Place:Columbus, Ohio, United States
Fields:Functional analysis
Workplaces:Ohio State University
Known For:Orno's theorem on regular operators on Banach lattices,
Summability and Approximation theory in Banach spaces

Beginning in 1974, the fictitious Peter Orno (alternatively, Peter Ørno, P. Ørno, and P. Orno) appeared as the author of research papers in mathematics. According to Robert Phelps, the name "P. Orno" is a pseudonym that was inspired by "porno", an abbreviation for "pornography".[1] Orno's short papers have been called "elegant" contributions to functional analysis. Orno's theorem on linear operators is important in the theory of Banach spaces. Research mathematicians have written acknowledgments that have thanked Orno for stimulating discussions and for Orno's generosity in allowing others to publish his results. The Mathematical Association of America's journals have also published more than a dozen problems whose solutions were submitted in the name of Orno.

Biography

Peter Orno appears as the author of short papers written by an anonymous mathematician; thus "Peter Orno" is a pseudonym. According to Robert R. Phelps, the name "P. Orno" was inspired by "porno", a shortening of "pornography".[1]

Orno's papers list his affiliation as the Department of Mathematics at Ohio State University. This affiliation is confirmed in the description of Orno as a "special creation" at Ohio State in Pietsch's History of Banach spaces and linear operators.The publications list of Ohio State mathematician Gerald Edgar includes two items that were published under the name of Orno. Edgar indicates that he published them "as Peter Ørno".[2]

Research

His papers feature "surprisingly simple" proofs and solutions to open problems in functional analysis and approximation theory, according to reviewers from Mathematical Reviews: In one case, Orno's "elegant" approach was contrasted with the previously known "elementary, but masochistic" approach. Peter Orno's "permanent interest and sharp criticism stimulated" the "work" on Lectures on Banach spaces of analytic functions by Aleksander Pełczyński, which includes several of Orno's unpublished results. Tomczak-Jaegermann thanked Peter Orno for his stimulating discussions.

Selected publications

Peter Orno has published in research journals and in collections; his papers have always been short, having lengths between one and three pages. Orno has also established himself as a formidable solver of mathematical problems in peer-reviewed journals published by the Mathematical Association of America.

Research papers

Problem-solving

Between 1976 and 1982, Peter Orno contributed problems or solutions that appeared in eighteen issues of Mathematics Magazine, which is published by the Mathematical Association of America (MAA).[10] In 2006, Orno solved a problem in the American Mathematical Monthly, another peer-reviewed journal of the MAA:

Context

Peter Orno is one of several pseudonymous contributors in the field of mathematics. Other pseudonymous mathematicians active in the 20th century include Nicolas Bourbaki, John Rainwater, M. G. Stanley, and H. C. Enos.[11]

See also

Besides connoting "pornography", the name "Ørno" features a non-standard symbol:

References

External resources

Notes and References

  1. In the index to his Sequences and series in Banach spaces, Joseph Diestel places Peter Orno under the letter "p" as "P. ORNO", with all-capital letters in Diestel's original. .
  2. Gerald A. Edgar, Publications, Ohio State University. Retrieved March 18, 2012; archived by WebCite at https://www.webcitation.org/66GaKYk03. Items that Edgar claims as his work, but identifies as having been attributed to "Peter Ørno", are the problem proposed in Mathematics Magazine 52 (1979), 179, and the problem solution presented in American Mathematical Monthly 113 (2006) 572–573.
  3. Book: Abramovich . Y. A. . Aliprantis . C. D. . C. D. Aliprantis . Positive Operators . Johnson . W. B. . William B. Johnson (mathematician) . Lindenstrauss . J. . Joram Lindenstrauss . 2001 . Handbook of the Geometry of Banach Spaces . Elsevier Science B. V. . 1 . 85–122 . 978-0-444-82842-2 . 10.1016/S1874-5849(01)80004-8 . Handbook of the Geometry of Banach Spaces .
  4. Yanovskii . L. P. . 1979 . Summing and serially summing operators and characterization of AL-spaces . . 20 . 2 . 287–292 . 10.1007/BF00970037 . 120484720 .
  5. Web site: Wickstead . A. W. . 2010 . When are all bounded operators between classical Banach lattices regular? .
  6. Book: Meyer-Nieberg, P. . 1991 . Banach Lattices . Universitext . . 3-540-54201-9 . 1128093.
  7. In, Manfred Wulff noted that Orno's theorem implies several propositions in the following paper:Xiong . H. Y. . 1984 . On whether or not L(E,F) = Lr(E,F) for some classical Banach lattices E and F . . 46 . 3 . 267–282 . 10.1016/1385-7258(84)90027-1 .
  8. In, Manfred Wolff noted that Orno's theorem has a good exposition and proof in the following textbook:Book: Schwarz, H.-U. . 1984 . Banach Lattices and Operators . Teubner-Texte zur Mathematik [Teubner Texts in Mathematics] . 71 . 208 . BSB B. G. Teubner Verlagsgesellschaft . 781131.
  9. Book: Abramovich, Y. A. . 1990 . When each continuous operator is regular . Leifman . L. J. . Functional Analysis, Optimization, and Mathematical economics . 133–140 . . 0-19-505729-5 . 1082571.
  10. "Problems" sections of Mathematics Magazine in which Peter Orno is one of the contributing authors are: Vol. 49, No. 3 (May 1976), pp. 149–154; Vol. 49, No. 4 (September 1976), pp. 211–218; Vol. 50, No. 1 (January 1977), pp. 46–53; Vol. 50, No. 4 (September 1977), pp. 211–216; Vol. 51, No. 2 (March 1978), pp. 127–132; Vol. 51, No. 3 (May 1978), pp. 193–201; Vol. 51, No. 4 (September 1978), pp. 245–249; Vol. 52, No. 1 (January 1979), pp. 46–55; Vol. 52, No. 2 (March 1979), pp. 113–118; Vol. 52, No. 3 (May 1979), pp. 179–184; Vol. 53, No. 1 (January 1980), pp. 49–54; Vol. 53, No. 2 (March 1980), pp. 112–117; Vol. 53, No. 3 (May 1980), pp. 180–186; Vol. 53, No. 4 (September 1980), pp. 244–251; Vol. 54, No. 2 (March 1981), pp. 84–87; Vol. 54, No. 4 (September 1981), pp. 211–214; Vol. 54, No. 5 (November 1981), pp. 270–274; and Vol. 55, No. 3 (May 1982), pp. 177–183.
  11. Another pseudonymous mathematician, John Rainwater, "is not as old or famous as N. Bourbaki (who may still be alive) but he is clearly older than Peter Orno .... (At least one of his authors had an interest in pornography, hence P. Orno.) He is also older than M. G. Stanley (with four papers) and H. C. Enoses [sic.] (with only two)."